Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine whether the improper integral converges or diverges. - 11x9+2dx\int _ { 1 } ^ { \infty } \frac { 1 } { x ^ { 9 } + 2 } d x

(Multiple Choice)
4.9/5
(30)

Use a trigonometric substitution to evaluate the integral. - dx2x(1+x)\int \frac { d x } { 2 \sqrt { x } ( 1 + x ) }

(Multiple Choice)
4.9/5
(41)

Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. - 3x4+15x2+5x3+5xdx\int \frac { 3 x ^ { 4 } + 15 x ^ { 2 } + 5 } { x ^ { 3 } + 5 x } d x

(Multiple Choice)
4.9/5
(36)

Evaluate the integral. - 20xcos12xdx\int 20 x \cos \frac { 1 } { 2 } x d x

(Multiple Choice)
4.7/5
(27)

Solve the problem. -Find the length of the curve y=ln(cscx),π/6xπ/2y = \ln ( \csc x ) , \pi / 6 \leq x \leq \pi / 2

(Multiple Choice)
4.9/5
(40)

Use Simpson's Rule with n = 4 steps to estimate the integral. - π0sinxdx\int _ { - \pi } ^ { 0 } \sin x d x

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. - ππ1+cosx2dx\int _ { - \pi } ^ { \pi } \sqrt { \frac { 1 + \cos x } { 2 } } d x

(Multiple Choice)
4.8/5
(48)

Express the integrand as a sum of partial fractions and evaluate the integral. - 596x29dx\int _ { 5 } ^ { 9 } \frac { 6 } { x ^ { 2 } - 9 } d x

(Multiple Choice)
5.0/5
(38)

Evaluate the integral. - cos6xcos4xdx\int \cos 6 x \cos 4 x d x

(Multiple Choice)
4.9/5
(34)

Use the Trapezoidal Rule with n = 4 steps to estimate the integral. - 10sinπtdt\int _ { - 1 } ^ { 0 } \sin \pi t d t

(Multiple Choice)
4.9/5
(32)

Provide an appropriate response. -  A student needs +exdx. Is this integral the same as 20+exdx, and if so, why? \text { A student needs } \int _ { - \infty } ^ { + \infty } \mathrm { e } ^ { - | \mathrm { x } | } \mathrm { d } x \text {. Is this integral the same as } 2 \int _ { 0 } ^ { + \infty } \mathrm { e } ^ { - | \mathrm { x } | } \mathrm { dx } \text {, and if so, why? }

(Short Answer)
4.8/5
(30)

Evaluate the improper integral. - 81dxx2/3\int _ { - 8 } ^ { 1 } \frac { d x } { x ^ { 2 / 3 } }

(Multiple Choice)
4.8/5
(38)

Solve the problem. -The height of a vase is 5 inches. The table shows the circumference of the vase (in inches) at half-inch intervals starting from the top down. Estimate the volume of the vase by using the Trapezoidal rule with n=10n = 10 . Round your answer to the nearest thousandth. [Hint: you will first need to find the areas of the cross-sections that correspond to the given circumferences.] Circumferences 4.7 8.1 4.2 9.4 4.1 10.1 4.8 8.5 5.6 6.4 6.8

(Multiple Choice)
4.8/5
(38)

Provide an appropriate response. -  A student knows that a+f(x)dx converges. Does af(x)dx also necessarily converge? \text { A student knows that } \int _ { a } ^ { + \infty } f ( x ) d x \text { converges. Does } \int _ { - \infty } ^ { a } \mathrm { f } ( \mathrm { x } ) \mathrm { dx } \text { also necessarily converge? }

(True/False)
4.9/5
(41)

Expand the quotient by partial fractions. - 2x+32(x+1)(x+7)\frac { 2 x + 32 } { ( x + 1 ) ( x + 7 ) }

(Multiple Choice)
4.8/5
(38)

Use reduction formulas to evaluate the integral. - sec34xdx\int \sec ^ { 3 } 4 x d x

(Multiple Choice)
4.8/5
(31)

Solve the initial value problem for x as a function of t. - (2t32t2+t1)dxdt=3,x(2)=0\left( 2 t ^ { 3 } - 2 t ^ { 2 } + t - 1 \right) \frac { d x } { d t } = 3 , x ( 2 ) = 0

(Multiple Choice)
4.9/5
(37)

Use integration by parts to establish a reduction formula for the integral. - xneaxdx\int \mathrm { x } ^ { \mathrm { n } } \mathrm { e } ^ { - a x } \mathrm { dx }

(Multiple Choice)
4.8/5
(38)

Evaluate the integral. - cot3x7dx\int \frac { \cot ^ { 3 } x } { 7 } d x

(Multiple Choice)
4.8/5
(32)

Find the value of the constant k so that the given function in a probability density function for a random variable over the specified interval. - f(x)=k(19x)f ( x ) = k ( 19 - x ) over [0,19][ 0,19 ]

(Multiple Choice)
4.8/5
(38)
Showing 101 - 120 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)