Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Estimate the minimum number of subintervals needed to approximate the integral 05x+4dx\int _ { 0 } ^ { 5 } \sqrt { x + 4 } d x with an error of magnitude less than 10410 ^ { - 4 } using Simpson's Rule.

(Multiple Choice)
4.9/5
(31)

Determine whether the improper integral converges or diverges. - 0πsinθdθ(πθ)2/5\int _ { 0 } ^ { \pi } \frac { \sin \theta d \theta } { ( \pi - \theta ) ^ { 2 / 5 } }

(Multiple Choice)
4.8/5
(33)

Find the value of the constant k so that the given function in a probability density function for a random variable over the specified interval. - f(x)=17x over [4,k]f ( x ) = \frac { 1 } { 7 } x \text { over } [ 4 , k ]

(Multiple Choice)
4.8/5
(37)

Evaluate the integral. - dx5+13sin2x\int \frac { d x } { 5 + 13 \sin 2 x }

(Multiple Choice)
5.0/5
(38)

Use reduction formulas to evaluate the integral. - tan52xdx\int \tan ^ { 5 } 2 x d x

(Multiple Choice)
4.8/5
(35)

Solve the problem by integration. -Find the first-quadrant area bounded by y=1x3+4x2+3x,x=1y = \frac { 1 } { x ^ { 3 } + 4 x ^ { 2 } + 3 x } , x = 1 , and x=4x = 4 .

(Multiple Choice)
4.9/5
(32)

Evaluate the integral. - tan42tdt\int \tan ^ { 4 } 2 t d t

(Multiple Choice)
4.9/5
(37)

Evaluate the integral. - csc36tdt\int \csc ^ { 3 } 6 t d t

(Multiple Choice)
4.8/5
(43)

Integrate the function. - x2(x21)5/2dt\int \frac { x ^ { 2 } } { \left( x ^ { 2 } - 1 \right) ^ { 5 / 2 } } d t

(Multiple Choice)
4.7/5
(41)

Determine whether the improper integral converges or diverges. - 111xlnxdx\int _ { - 1 } ^ { 1 } \frac { 1 } { x \ln | x | } d x

(Multiple Choice)
4.7/5
(41)

Solve the problem. -Find the volume generated by revolving the curve y=cos5xy = \cos 5 x about the xx -axis, 0xπ/120 \leq x \leq \pi / 12

(Multiple Choice)
4.9/5
(36)

Use any method to evaluate the integral. - 5xsin2xdx\int 5 x \sin ^ { 2 } x d x

(Multiple Choice)
4.8/5
(38)

Solve the initial value problem for x as a function of t. - (t2+2t)dxdt=2x+8,x(1)=1\left( t ^ { 2 } + 2 t \right) \frac { d x } { d t } = 2 x + 8 , x ( 1 ) = 1

(Multiple Choice)
4.8/5
(36)

Evaluate the integral. - 0π/4sin7ydy\int _ { 0 } ^ { \pi / 4 } \sin ^ { 7 } y d y

(Multiple Choice)
4.8/5
(39)

Use the Trapezoidal Rule with n = 4 steps to estimate the integral. - π0sinxdx\int _ { - \pi } ^ { 0 } \sin x d x

(Multiple Choice)
4.8/5
(40)

Evaluate the integral. - sin4xcos2xdx\int \sin 4 x \cos 2 x d x

(Multiple Choice)
4.8/5
(42)

Solve the problem. -Find an upper bound for ET\left| \mathrm { E } _ { \mathrm { T } } \right| in estimating 05(4x+1)dx\int _ { 0 } ^ { 5 } ( 4 \mathrm { x } + 1 ) \mathrm { dx } with n=6\mathrm { n } = 6 steps.

(Multiple Choice)
4.7/5
(33)

Evaluate the integral. - 2x7x2dx\int \frac { \sqrt { 2 x - 7 } } { x ^ { 2 } } d x

(Multiple Choice)
5.0/5
(37)

Determine whether the improper integral converges or diverges. - 5xex2dx\int _ { - \infty } ^ { \infty } 5 x e ^ { - x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(37)

Use Simpson's Rule with n = 4 steps to estimate the integral. - 0191+x2dx\int _ { 0 } ^ { 1 } \frac { 9 } { 1 + x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(38)
Showing 401 - 420 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)