Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Integrate the function. - dx(x2+25)3/2\int \frac { d x } { \left( x ^ { 2 } + 25 \right) ^ { 3 / 2 } }

(Multiple Choice)
4.9/5
(35)

Determine whether the improper integral converges or diverges. - 1xx4+8dx\int _ { 1 } ^ { \infty } \frac { \sqrt { x } } { \sqrt { x ^ { 4 } + 8 } } d x

(Multiple Choice)
4.8/5
(37)

Solve the problem. -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the xx -axis and the curve y=sin6x,0xπ/6y = \sin 6 x , 0 \leq x \leq \pi / 6 about the line x=π/6x = \pi / 6 .

(Multiple Choice)
4.8/5
(41)

Determine whether the improper integral converges or diverges. - 1x6ex1dx\int _ { 1 } ^ { \infty } \frac { x ^ { 6 } } { \sqrt { e ^ { x } - 1 } } d x

(Multiple Choice)
4.8/5
(45)

Solve the problem by integration. -The general expression for the slope of a curve is 4x+4x2+4x\frac { 4 x + 4 } { x ^ { 2 } + 4 x } . Find the equation of the curve if it passes through (1, 0 ).

(Multiple Choice)
4.8/5
(30)

Integrate the function. - 1t26t2dt\int \frac { 1 } { t ^ { 2 } \sqrt { 6 - t ^ { 2 } } } d t

(Multiple Choice)
4.8/5
(42)

Evaluate the integral. - 2sec4xdx\int 2 \sec ^ { 4 } x d x

(Multiple Choice)
4.9/5
(43)

Solve the problem. -Estimate the minimum number of subintervals needed to approximate the integral 14(4x2+7)dx\int _ { 1 } ^ { 4 } \left( 4 x ^ { 2 } + 7 \right) d x with an error of magnitude less than 10410 ^ { - 4 } using the Trapezoidal Rule.

(Multiple Choice)
4.9/5
(32)

Determine whether the function is a probability density function over the given interval. - f(x)=13x,6x8\mathrm { f } ( \mathrm { x } ) = \frac { 1 } { 3 } \mathrm { x } , 6 \leq \mathrm { x } \leq 8

(True/False)
4.7/5
(32)

Solve the problem by integration. -  Find the x-coordinate of the centroid of the first-quadrant area bounded by y=2x3+x,x=1, and x=3\text { Find the } x \text {-coordinate of the centroid of the first-quadrant area bounded by } y = \frac { 2 } { x ^ { 3 } + x } , x = 1 \text {, and } x = 3 \text {. }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Find the area bounded by y=3819x2,x=0,y=0y = \frac { 3 } { \sqrt { 81 - 9 x ^ { 2 } } } , x = 0 , y = 0 , and x=2x = 2 .

(Multiple Choice)
4.7/5
(40)

Find the surface area or volume. -Use numerical integration with a programmable calculator or a CAS to find, to two decimal places, the area of the surface generated by revolving the curve y=sin2x,0xπ2y = \sin 2 x , 0 \leq x \leq \frac { \pi } { 2 } , about the xx -axis.

(Multiple Choice)
4.8/5
(43)

Evaluate the improper integral or state that it is divergent. - 52x3dx\int _ { - \infty } ^ { - 5 } \frac { 2 } { x ^ { 3 } } d x

(Multiple Choice)
4.8/5
(47)

Evaluate the integral. - 6xcos9xdx\int - 6 x \cos 9 x d x

(Multiple Choice)
4.7/5
(34)

Provide an appropriate response. -Here is an argument that ln2=\ln 2 = \infty - \infty . Where does the argument go wrong? ln2=ln1+ln2=ln1ln12\ln 2 = \ln 1 + \ln 2 = \ln 1 - \ln \frac { 1 } { 2 } =limbln(b1b)ln12= \lim _ { b \rightarrow \infty } \ln \left( \frac { b - 1 } { b } \right) - \ln \frac { 1 } { 2 } =limb[lnx1x]2b= \lim _ { b \rightarrow \infty } \left[ \ln \frac { x - 1 } { x } \right] _ { 2 } ^ { b } =limb[ln(x1)lnx]2b= \lim _ { b \rightarrow \infty } [ \ln ( x - 1 ) - \ln x ] _ { 2 } ^ { b } =limb2b(1x11x)dx= \lim _ { b \rightarrow \infty } \int _ { 2 } ^ { b } \left( \frac { 1 } { x - 1 } - \frac { 1 } { x } \right) d x =2(1x11x)dx= \int _ { 2 } ^ { \infty } \left( \frac { 1 } { x - 1 } - \frac { 1 } { x } \right) d x Here is an argument that ln2=.\ln 2 = \infty - \infty . ln2=ln1+ln2=ln1ln12\ln 2 = \ln 1 + \ln 2 = \ln 1 - \ln \frac { 1 } { 2 } =limbln(b1b)ln12= \lim _ { b \rightarrow \infty } \ln \left( \frac { b - 1 } { b } \right) - \ln \frac { 1 } { 2 } =limb[lnx1x]2b= \lim _ { b \rightarrow \infty } \left[ \ln \frac { x - 1 } { x } \right] _ { 2 } ^ { b } =limb[ln(x1)lnx]2b= \lim _ { b \rightarrow \infty } [ \ln ( x - 1 ) - \ln x ] { } _ { 2 } ^ { b } =limb2b(1x11x)dx= \lim _ { b \rightarrow \infty } \int _ { 2 } ^ { b } \left( \frac { 1 } { x - 1 } - \frac { 1 } { x } \right) d x =2(1x11x)dx= \int _ { 2 } ^ { \infty } \left( \frac { 1 } { x - 1 } - \frac { 1 } { x } \right) d x =21x1dx21xdx= \int _ { 2 } ^ { \infty } \frac { 1 } { x - 1 } d x - \int _ { 2 } ^ { \infty } \frac { 1 } { x } d x =limb[ln(x1)]bblim[lnx]= \lim _ { b \rightarrow \infty } [ \ln ( x - 1 ) ] \frac { b } { b } - \lim [ \ln x ] == \infty - \infty =21x1dx21xdx= \int _ { 2 } ^ { \infty } \frac { 1 } { x - 1 } d x - \int _ { 2 } ^ { \infty } \frac { 1 } { x } d x =limb[ln(x1)]2blimb[lnx]2b= \lim _ { b \rightarrow \infty } [ \ln ( x - 1 ) ] _ { 2 } ^ { b } - \lim _ { b \rightarrow \infty } [ \ln x ] _ { 2 } ^ { b } == \infty - \infty

(Essay)
4.8/5
(45)

Evaluate the improper integral or state that it is divergent. - 10x(x21)2dx\int _ { - \infty } ^ { \infty } \frac { 10 x } { \left( x ^ { 2 } - 1 \right) ^ { 2 } } d x

(Multiple Choice)
4.8/5
(32)

Solve the problem. -Find the length of the curve y=ln(sinx),π/4xπ/2y = \ln ( \sin x ) , \pi / 4 \leq x \leq \pi / 2

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Two dice are rolled, and the random variable X assigns to each outcome the sum of the number of dots showing on each face. What is the probability that X > 10?

(Multiple Choice)
4.8/5
(35)

Integrate the function. - dx(16x2+1)2\int \frac { d x } { \left( 16 x ^ { 2 } + 1 \right) ^ { 2 } }

(Multiple Choice)
4.8/5
(33)

Solve the problem by integration. -Under certain conditions, the velocity v\mathrm { v } (in m/s\mathrm { m } / \mathrm { s } ) of an object moving along a straight line as a function of the time tt (in s) is given by v=2t2+20t+33(4t+1)(t+4)2v = \frac { 2 t ^ { 2 } + 20 t + 33 } { ( 4 t + 1 ) ( t + 4 ) ^ { 2 } } . Find the distance traveled by the object during the first 2 s2 \mathrm {~s} .

(Multiple Choice)
4.9/5
(40)
Showing 141 - 160 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)