Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Express the integrand as a sum of partial fractions and evaluate the integral. - 3x+17x2+9x+20dx\int \frac { 3 x + 17 } { x ^ { 2 } + 9 x + 20 } d x

(Multiple Choice)
4.9/5
(41)

Use integration by parts to establish a reduction formula for the integral. - xnexdx\int \mathrm { x } ^ { \mathrm { n } } \mathrm { e } ^ { \mathrm { x } } \mathrm { dx }

(Multiple Choice)
4.8/5
(27)

Solve the problem. -The charge q\mathrm { q } (in coulombs) delivered by a current i\mathrm { i } (in amperes) is given by q=idt\mathrm { q } = \int \mathrm { i } \mathrm { dt } , where tt is the time (in seconds). A damped-out periodic wave form has current given by i=e3tcos5t\mathrm { i } = \mathrm { e } ^ { - 3 \mathrm { t } } \cos 5 \mathrm { t } . Find a formula for the charge delivered over time tt .

(Multiple Choice)
4.8/5
(42)

Evaluate the integral. - cosθ2cosθ5dθ\int \cos \frac { \theta } { 2 } \cos \frac { \theta } { 5 } d \theta

(Multiple Choice)
4.9/5
(39)

Integrate the function. - 64x2x4dx,x<8\int \frac { \sqrt { 64 - x ^ { 2 } } } { x ^ { 4 } } d x , x < 8

(Multiple Choice)
4.9/5
(40)

Solve the problem. -Find an upper bound for ES\left| E _ { S } \right| in estimating 0π5xcosxdx\int _ { 0 } ^ { \pi } 5 x \cos x d x with n=12n = 12 steps. Give your answer as a decimal rounded to five decimal places.

(Multiple Choice)
4.8/5
(32)

Solve the problem. -Estimate the area of the surface generated by revolving the curve y=2x2,0x3y = 2 x ^ { 2 } , 0 \leq x \leq 3 about the xx -axis. Use Simpson's Rule with n=6\mathrm { n } = 6 .

(Multiple Choice)
4.8/5
(35)

Solve the problem. -Estimate the minimum number of subintervals needed to approximate the integral π/2π/24sinxdx\int _ { - \pi / 2 } ^ { \pi / 2 } 4 \sin x d x with an error of magnitude less than 10410 ^ { - 4 } using the Trapezoidal Rule.

(Multiple Choice)
4.8/5
(36)

Evaluate the improper integral or state that it is divergent. - 11x(x2+5)dx\int _ { 1 } ^ { \infty } \frac { 1 } { x \left( x ^ { 2 } + 5 \right) } d x

(Multiple Choice)
4.8/5
(39)

Solve the problem. -Estimate the minimum number of subintervals needed to approximate the integral 251x1dx\int _ { 2 } ^ { 5 } \frac { 1 } { x - 1 } d x with an error of magnitude less than 10410 ^ { - 4 } using Simpson's Rule.

(Multiple Choice)
4.8/5
(28)

Provide an appropriate response. -this integral necessarily also diverge?

(True/False)
4.8/5
(38)

Provide an appropriate response. -  Show that 3dx1+x2+3dx1+x2=5dx1+x2+5dx1+x2\text { Show that } \int _ { - \infty } ^ { 3 } \frac { \mathrm { dx } } { 1 + \mathrm { x } ^ { 2 } } + \int _ { 3 } ^ { \infty } \frac { \mathrm { dx } } { 1 + \mathrm { x } ^ { 2 } } = \int _ { - \infty } ^ { 5 } \frac { \mathrm { dx } } { 1 + \mathrm { x } ^ { 2 } } + \int _ { 5 } ^ { \infty } \frac { \mathrm { dx } } { 1 + \mathrm { x } ^ { 2 } }

(Essay)
4.9/5
(39)

Evaluate the integral. - (3x+7)e5xdx\int ( 3 x + 7 ) e ^ { - 5 x } d x

(Multiple Choice)
4.7/5
(39)

Evaluate the integral. - 4+3xxdx\int \frac { \sqrt { 4 + 3 x } } { x } d x

(Multiple Choice)
4.9/5
(24)

Solve the problem. -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y=exy = e ^ { x } , and the line x=ln5x = \ln 5 about the line x=ln5x = \ln 5 .

(Multiple Choice)
4.8/5
(35)

Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. - 5x3+7x22x4x3x2dx\int \frac { 5 x ^ { 3 } + 7 x ^ { 2 } - 2 x - 4 } { x ^ { 3 } - x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(39)

Solve the problem by integration. -Find the volume generated by revolving the first-quadrant area bounded by y=x(x+2)2y = \frac { x } { ( x + 2 ) ^ { 2 } } and x=2x = 2 about the X-axis.

(Multiple Choice)
5.0/5
(40)

Evaluate the integral. - t4ln(t5+4)t5+4dt\int \frac { t ^ { 4 } \ln \left( t ^ { 5 } + 4 \right) } { t ^ { 5 } + 4 } d t

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Find an upper bound for ET\left| \mathrm { E } _ { \mathrm { T } } \right| in estimating 461(x1)2dx\int _ { 4 } ^ { 6 } \frac { 1 } { ( \mathrm { x } - 1 ) ^ { 2 } } \mathrm { dx } with n=7\mathrm { n } = 7 steps.

(Multiple Choice)
4.9/5
(35)

Solve the problem. -Find an upper bound for ES| E_ S | in estimating 13(2x42x)dx\int _ { 1 } ^ { 3 } \left( 2 x ^ { 4 } - 2 x \right) d x with n=6n = 6 steps.

(Multiple Choice)
4.8/5
(37)
Showing 381 - 400 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)