Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

For the function f whose graph is given, determine the limit. -  Find limx2f(x) and limx2+f(x)\text { Find } \lim _ { x \rightarrow 2 ^ { - } } f ( x ) \text { and } \lim _ { x - 2 ^ { + } } f ( x ) \text {. }  For the function f whose graph is given, determine the limit. - \text { Find } \lim _ { x \rightarrow 2 ^ { - } } f ( x ) \text { and } \lim _ { x - 2 ^ { + } } f ( x ) \text {. }

(Multiple Choice)
4.9/5
(43)

Use the graph to estimate the specified limit. -  Find limxθf(x)\text { Find } \lim _{x \rightarrow \theta} f(x)  Use the graph to estimate the specified limit. - \text { Find } \lim _{x \rightarrow \theta} f(x)

(Multiple Choice)
4.9/5
(32)

Find the limit. - limx2+7x210+x\lim _ { x \rightarrow 2 ^ { + } } \sqrt { \frac { 7 x ^ { 2 } } { 10 + x } }

(Multiple Choice)
4.8/5
(43)

Find the limit. - limx7x29x+213x28x+3\lim _ { x \rightarrow \infty } \frac { - 7 x ^ { 2 } - 9 x + 2 } { - 13 x ^ { 2 } - 8 x + 3 }

(Multiple Choice)
4.7/5
(41)

Find the limit. - limx2+(xx+2)(4x+4x2+2x)\lim _ { x \rightarrow 2 ^ { + } } \left( \frac { x } { x + 2 } \right) \left( \frac { - 4 x + 4 } { x ^ { 2 } + 2 x } \right)

(Multiple Choice)
4.9/5
(35)

Find the limit. - limx0(x25)\lim _ { x \rightarrow 0 } \left( x ^ { 2 } - 5 \right)

(Multiple Choice)
4.8/5
(35)

Find the limit. - limxπ/2)secx\lim _{x \rightarrow-\pi / 2)^{-}} \sec x

(Multiple Choice)
4.9/5
(33)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=1x,L=12,c=2\mathrm { f } ( \mathrm { x } ) = \frac { 1 } { \mathrm { x } } , \mathrm { L } = \frac { 1 } { 2 } , \mathrm { c } = 2 , and ε=0.3\varepsilon = 0.3

(Multiple Choice)
4.8/5
(42)

Given the interval (a,b)( a , b ) on the xx -axis with the point cc inside, find the greatest value for δ>0\delta > 0 such that for all xx , 0<xc<δa<x<b0 < | x - c | < \delta \Rightarrow a < x < b \text {. } - a=1.348,b=2.804,c=1.869a = 1.348 , b = 2.804 , c = 1.869

(Multiple Choice)
4.8/5
(34)

Use the table of values of f to estimate the limit. -Let f(x)=sin(3x)xf ( x ) = \frac { \sin ( 3 x ) } { x } , find limx0f(x)\lim _ { x \rightarrow - 0 } f ( x ) x -0.1 -0.01 -0.001 0.001 0.01 0.1 () 2.99955002 2.99955002

(Multiple Choice)
5.0/5
(41)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=583x,c=2,ε=0.2f ( x ) = \sqrt { 58 - 3 x } , c = - 2 , \varepsilon = 0.2

(Multiple Choice)
4.8/5
(35)

Use the graph to evaluate the limit. - limx0f(x)\lim _ { x \rightarrow - 0 } f ( x )  Use the graph to evaluate the limit. - \lim _ { x \rightarrow - 0 } f ( x )

(Multiple Choice)
4.9/5
(41)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx6x4x16\lim _ { x \rightarrow 6 } \frac { \sqrt { x } - 4 } { x - 16 }

(Multiple Choice)
4.9/5
(31)

Find the limit, if it exists. - limx12x74x+5\lim _ { x \rightarrow 1 } \frac { 2 x - 7 } { 4 x + 5 }

(Multiple Choice)
4.8/5
(35)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=17x,L=4,c=1\mathrm { f } ( \mathrm { x } ) = \sqrt { 17 - \mathrm { x } } , \mathrm { L } = 4 , \mathrm { c } = 1 , and ε=1\varepsilon = 1

(Multiple Choice)
4.9/5
(36)

Find the limit. - limx53x251x\lim _ { x \rightarrow \sqrt [ 3 ] { 5 } } \frac { x ^ { 2 } } { 5 } - \frac { 1 } { x }

(Multiple Choice)
4.8/5
(42)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=1(x+2)2y = \frac { 1 } { ( x + 2 ) ^ { 2 } }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { 1 } { ( x + 2 ) ^ { 2 } }

(Multiple Choice)
4.8/5
(37)

Provide an appropriate response. -Let limx2f(x)=6\lim _ { x \rightarrow 2 } f ( x ) = - 6 and limx2g(x)=8\lim _ { x \rightarrow 2 } g ( x ) = - 8 . Find limx2[f(x)g(x)]\lim _ { x \rightarrow 2 } [ f ( x ) \cdot g ( x ) ] .

(Multiple Choice)
4.9/5
(36)

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } occur frequently in calculus. Evaluate this limit for the given value of xx and function ff . - f(x)=5x2,x=2f ( x ) = 5 x ^ { 2 } , x = - 2

(Multiple Choice)
4.8/5
(42)

Provide an appropriate response. -Given ε>0\varepsilon > 0 , find an interval I=(3δ,3),δ>0\mathrm { I } = ( 3 - \delta , 3 ) , \delta > 0 , such that if xx lies in I\mathrm { I } , then 3x<ε\sqrt { 3 - x } < \varepsilon . What limit is being verified and what is its value?

(Multiple Choice)
4.9/5
(31)
Showing 181 - 200 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)