Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit. - limx13x21\lim _ { x \rightarrow 1 ^ { - } } \frac { 3 } { x ^ { 2 } - 1 }

(Multiple Choice)
4.7/5
(39)

Find the limit. - limx1x25x+4x3x\lim _ { x \rightarrow 1 ^ { - } } \frac { x ^ { 2 } - 5 x + 4 } { x ^ { 3 } - x }

(Multiple Choice)
4.9/5
(40)

Find the limit, if it exists. - limx5x225x29x+20\lim _ { x \rightarrow 5 } \frac { x ^ { 2 } - 25 } { x ^ { 2 } - 9 x + 20 }

(Multiple Choice)
4.9/5
(35)

For the function f whose graph is given, determine the limit. -  Find limx0f(x)\text { Find } \lim _{x \rightarrow 0} f(x) \text {. }  For the function f whose graph is given, determine the limit. - \text { Find } \lim _{x \rightarrow 0} f(x) \text {. }

(Multiple Choice)
4.8/5
(40)

Provide an appropriate response. -Suppose limxθf(x)=1\lim _ { x \rightarrow \theta } f ( x ) = 1 and limxθg(x)=3\lim _ { x \rightarrow \theta } g ( x ) = - 3 . Name the limit rules that are used to accomplish steps (a), (b), and (c) of the following calculation.  Provide an appropriate response. -Suppose  \lim _ { x \rightarrow \theta } f ( x ) = 1  and  \lim _ { x \rightarrow \theta } g ( x ) = - 3 . Name the limit rules that are used to accomplish steps (a), (b), and (c) of the following calculation.

(Multiple Choice)
4.9/5
(35)

Provide an appropriate response. -It can be shown that the inequalities xxcos(1x)x- x \leq x \cos \left( \frac { 1 } { x } \right) \leq x hold for all values of x0x \geq 0 . Find limx0xcos(1x)\lim _ { x \rightarrow 0 } x \cos \left( \frac { 1 } { x } \right) if it exists.

(Multiple Choice)
5.0/5
(33)

Solve the problem. -The cross-sectional area of a cylinder is given by A=πD2/4\mathrm { A } = \pi \mathrm { D } ^ { 2 } / 4 , where D\mathrm { D } is the cylinder diameter. Find the tolerance range of D\mathrm { D } such that A10<0.01| \mathrm { A } - 10 | < 0.01 as long as Dmin<D<Dmax\mathrm { D } _ { \min } < \mathrm { D } < \mathrm { D } _ { \max } .

(Multiple Choice)
4.9/5
(35)

Provide an appropriate response. -If limxθf(x)=1\lim _ { x \rightarrow \theta ^ { - } } f ( x ) = 1 and f(x)f ( x ) is an odd function, which of the following statements are true? I. limxθf(x)=1\lim _ { x \rightarrow - \theta } f ( x ) = 1 II. limxθ+f(x)=1\lim _ { x - \theta ^ { + } } f ( x ) = - 1 III. limxθf(x)\lim _ { x \rightarrow - \theta } f ( x ) does not exist.

(Multiple Choice)
4.8/5
(35)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=xx2+x+4y = \frac { x } { x ^ { 2 } + x + 4 }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { x } { x ^ { 2 } + x + 4 }

(Multiple Choice)
4.7/5
(38)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx036+x36xx\lim _ { x \rightarrow 0 } \frac { \sqrt { 36 + x } - \sqrt { 36 - x } } { x }

(Multiple Choice)
4.8/5
(34)

Find the limit. - limx5x+116x7\lim _ { x \rightarrow } \frac { 5 x + 1 } { 16 x - 7 }

(Multiple Choice)
4.9/5
(32)

Find the limit and determine if the function is continuous at the point being approached. - limx0sin1(ex5)\lim _ { x \rightarrow 0 } \sin ^ { - 1 } \left( e ^ { x ^ { 5 } } \right)

(Multiple Choice)
4.9/5
(32)

Solve the problem. -  The graph below shows the number of tuberculosis deaths in the United States from 1989 to 1998.\text { The graph below shows the number of tuberculosis deaths in the United States from } 1989 \text { to } 1998 .  Solve the problem. - \text { The graph below shows the number of tuberculosis deaths in the United States from } 1989 \text { to } 1998 .     Estimate the average rate of change in tuberculosis deaths from 1996 to 1998. Estimate the average rate of change in tuberculosis deaths from 1996 to 1998.

(Multiple Choice)
4.9/5
(36)

Find the limit. - limx0(5sinx1)\lim _ { x \rightarrow 0 } ( 5 \sin x - 1 )

(Multiple Choice)
4.7/5
(40)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Use the table of values of f to estimate the limit. -  Let f(x)=x2x26x+8, find limx2f(x)\text { Let } f(x)=\frac{x-2}{x^{2}-6 x+8} \text {, find } \lim _{x \rightarrow 2} f(x) 1.9 1.99 1.999 2.001 2.01 2.1 ()

(Multiple Choice)
4.7/5
(42)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=22xx2xy = \frac { 2 - 2 x - x ^ { 2 } } { x }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { 2 - 2 x - x ^ { 2 } } { x }

(Multiple Choice)
4.9/5
(39)

Solve the problem. -The current in a simple electrical circuit is given by I=V/R\mathrm { I } = \mathrm { V } / \mathrm { R } , where I\mathrm { I } is the current in amperes, V\mathrm { V } is the voltage in volts, and R\mathrm { R } is the resistance in ohms. When V=12\mathrm { V } = 12 volts, what is a 12Ω12 \Omega resistor's tolerance for the current to be within 1±0.011 \pm 0.01 amp?

(Multiple Choice)
4.8/5
(45)

Find the limit. - limx2(x2+8x2)\lim _ { x \rightarrow 2 } \left( x ^ { 2 } + 8 x - 2 \right)

(Multiple Choice)
5.0/5
(49)

Solve the problem. -To what new value should f(2)\mathrm { f } ( 2 ) be changed to remove the discontinuity? f(x)={2x1,x<25x=2x+1,x>2f ( x ) = \left\{ \begin{array} { l l } 2 x - 1 , & x < 2 \\5 & x = 2 \\x + 1 , & x > 2\end{array} \right.

(Multiple Choice)
4.8/5
(34)
Showing 301 - 320 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)