Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } occur frequently in calculus. Evaluate this limit for the given value of xx and function ff . - f(x)=2x+10,x=25f ( x ) = 2 \sqrt { x } + 10 , x = 25

(Multiple Choice)
4.8/5
(40)

Find the limit. - limx01x2/3\lim _ { x \rightarrow - 0 } \frac { 1 } { x ^ { 2 / 3 } }

(Multiple Choice)
4.8/5
(46)

Find numbers a and b, or k, so that f is continuous at every point. - f(x)={10x+8, if x<7kx+2, if x7f ( x ) = \left\{ \begin{array} { l l } 10 x + 8 , & \text { if } x < - 7 \\ k x + 2 , & \text { if } x \geq - 7 \end{array} \right.

(Multiple Choice)
4.9/5
(41)

Find the limit. - limxcos5xx\lim _ { x \rightarrow \infty } \frac { \cos 5 x } { x }

(Multiple Choice)
4.8/5
(36)

Find the limit, if it exists. - limx6x+6(x6)2\lim _ { x \rightarrow 6 } \frac { x + 6 } { ( x - 6 ) ^ { 2 } }

(Multiple Choice)
4.8/5
(37)

Find the limit. - limx(4x16x23x+6)\lim _ { x \rightarrow } \left( 4 x - \sqrt { 16 x ^ { 2 } - 3 x + 6 } \right)

(Multiple Choice)
4.8/5
(36)

Find the intervals on which the function is continuous. - y=sin(3θ)5θy = \frac { \sin ( 3 \theta ) } { 5 \theta }

(Multiple Choice)
5.0/5
(35)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.8/5
(44)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.9/5
(36)

Find the limit if it exists. - m145m_{-14} \sqrt{5}

(Multiple Choice)
4.9/5
(41)

Find the limit, if it exists. - limh0(x+h)3x3h\lim _ { h \rightarrow 0 } \frac { ( x + h ) ^ { 3 } - x ^ { 3 } } { h }

(Multiple Choice)
4.8/5
(35)

Find the limit. - limx4x3+3x2x6x2\lim _ { x \rightarrow \infty } \frac { 4 x ^ { 3 } + 3 x ^ { 2 } } { x - 6 x ^ { 2 } }

(Multiple Choice)
4.9/5
(33)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Provide an appropriate response. -Explain why the following five statements ask for the same information. (a) Find the roots of f(x)=4x33x4f ( x ) = 4 x ^ { 3 } - 3 x - 4 . (b) Find the xx -coordinate of the points where the curve y=4x3y = 4 x ^ { 3 } crosses the line y=3x+4y = 3 x + 4 . (c) Find all the values of xx for which 4x33x=44 x ^ { 3 } - 3 x = 4 . (d) Find the xx -coordinates of the points where the cubic curve y=4x33xy = 4 x ^ { 3 } - 3 x crosses the line y=4y = 4 . (e) Solve the equation 4x33x4=04 x ^ { 3 } - 3 x - 4 = 0 .

(Essay)
4.9/5
(32)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=mx+b,m>0,L=m5+b,c=15, and ε=c>0f ( x ) = m x + b , m > 0 , L = \frac { m } { 5 } + b , c = \frac { 1 } { 5 } , \text { and } \varepsilon = c > 0

(Multiple Choice)
4.7/5
(45)

Find the limit. - limx0f(x)x=1\lim _ { x \rightarrow 0 } \frac { f ( x ) } { x } = 1 , find limxθf(x)\lim _ { x \rightarrow \theta } f ( x )

(Multiple Choice)
4.7/5
(44)

Find the limit. - limxπx+7cos(x+π)\lim _ { x \rightarrow \pi } \sqrt { x + 7 } \cos ( x + \pi )

(Multiple Choice)
4.7/5
(41)

Find the limit. - lim1x3x+2\lim _ { \rightarrow 1 } \frac { x } { 3 x + 2 }

(Multiple Choice)
4.9/5
(37)

Solve the problem. -Ohm's Law for electrical circuits is stated V=RI\mathrm { V } = \mathrm { RI } , where V\mathrm { V } is a constant voltage, R\mathrm { R } is the resistance in ohms and I is the current in amperes. Your firm has been asked to supply the resistors for a circuit in which V\mathrm { V } will be 12 volts and I is to be 5±0.15 \pm 0.1 amperes. In what interval does RR have to lie for I to be within 0.10.1 amps of the target value I0=5I _ { 0 } = 5 ?

(Multiple Choice)
4.9/5
(35)

Find the intervals on which the function is continuous. - y=2x44y = \sqrt [ 4 ] { 2 x - 4 }

(Multiple Choice)
4.8/5
(39)
Showing 101 - 120 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)