Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } occur frequently in calculus. Evaluate this limit for the given value of xx and function ff . - (x)=x5+7,x=10( x ) = \frac { x } { 5 } + 7 , x = 10

(Multiple Choice)
4.7/5
(36)

Find the limit, if it exists. - limx1x2+8x9x21\lim _ { x \rightarrow 1 } \frac { x ^ { 2 } + 8 x - 9 } { x ^ { 2 } - 1 }

(Multiple Choice)
4.8/5
(29)

Provide an appropriate response. -  Let limx10f(x)=1024. Find limx10f(x)5\text { Let } \lim _ { x \rightarrow 10 } f ( x ) = 1024 \text {. Find } \lim _ { x \rightarrow 10 } \sqrt [ 5 ] { f ( x ) }

(Multiple Choice)
4.8/5
(35)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0xsin3x\lim _ { x \rightarrow 0 } \frac { x } { \sin 3 x }

(Multiple Choice)
4.9/5
(46)

Find the limit. - limx5+3x225\lim _ { x \rightarrow 5 ^ { + } } \frac { 3 } { x ^ { 2 } - 25 }

(Multiple Choice)
5.0/5
(31)

Use the graph to evaluate the limit. - limxθf(x)\lim _ { x \rightarrow \theta } f ( x )  Use the graph to evaluate the limit. - \lim _ { x \rightarrow \theta } f ( x )

(Multiple Choice)
4.8/5
(44)

Find the limit, if it exists. - limx13x2+7x23x24x2\lim _ { x \rightarrow - 1 } \frac { 3 x ^ { 2 } + 7 x - 2 } { 3 x ^ { 2 } - 4 x - 2 }

(Multiple Choice)
4.9/5
(31)

Find the limit. - limx(7x2+37x23)\lim _ { x \rightarrow \infty } \left( \sqrt { 7 x ^ { 2 } + 3 } - \sqrt { 7 x ^ { 2 } - 3 } \right)

(Multiple Choice)
4.7/5
(39)

Use the graph to estimate the specified limit. -  Find limx(1)f(x) and limx+1)+f(x)\text { Find } \lim _ { x \rightarrow ( - 1 ) ^ { - } } f ( x ) \text { and } \lim _ { x + 1 ) ^ { + } } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow ( - 1 ) ^ { - } } f ( x ) \text { and } \lim _ { x + 1 ) ^ { + } } f ( x )

(Multiple Choice)
4.9/5
(28)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.9/5
(46)

Find the limit. - limx2(3x52x44x3+x25)\lim _ { x \rightarrow 2 } \left( 3 x ^ { 5 } - 2 x ^ { 4 } - 4 x ^ { 3 } + x ^ { 2 } - 5 \right)

(Multiple Choice)
4.7/5
(37)

Use the graph to evaluate the limit. - limxθf(x)\lim _{x \rightarrow \theta} f(x)  Use the graph to evaluate the limit. - \lim _{x \rightarrow \theta} f(x)

(Multiple Choice)
4.8/5
(35)

Find the limit if it exists. - limx8(3x23x10)\lim _ { x \rightarrow 8 } \left( 3 x ^ { 2 } - 3 x - 10 \right)

(Multiple Choice)
4.8/5
(38)

Use the graph to evaluate the limit. - limx1f(x)\lim _{x \rightarrow 1} f(x)  Use the graph to evaluate the limit. - \lim _{x \rightarrow 1} f(x)

(Multiple Choice)
4.7/5
(31)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Determine the limit by sketching an appropriate graph. - limx2f(x), where f(x)={5x+3 for x<22x+4 for x2\lim _ { x \rightarrow 2 ^ { - } } f ( x ) , \text { where } f ( x ) = \left\{ \begin{array} { l l } - 5 x + 3 & \text { for } x < 2 \\2 x + 4 & \text { for } x \geq 2\end{array} \right.  Determine the limit by sketching an appropriate graph. - \lim _ { x \rightarrow 2 ^ { - } } f ( x ) , \text { where } f ( x ) = \left\{ \begin{array} { l l }  - 5 x + 3 & \text { for } x < 2 \\ 2 x + 4 & \text { for } x \geq 2 \end{array} \right.

(Multiple Choice)
4.8/5
(39)

Find the limit. - limxx2+2xx28x\lim _ { x \rightarrow } \sqrt { x ^ { 2 } + 2 x } - \sqrt { x ^ { 2 } - 8 x }

(Multiple Choice)
4.9/5
(37)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.8/5
(36)

Find the limit. - limx1+(1x4/51(x1)2/5)\lim _ { x \rightarrow 1 ^ { + } } \left( \frac { 1 } { x ^ { 4 / 5 } } - \frac { 1 } { ( x - 1 ) ^ { 2 / 5 } } \right)

(Multiple Choice)
4.8/5
(35)

Find the average rate of change of the function over the given interval. - y=2x,[2,8]y = \sqrt { 2 x } , [ 2,8 ]

(Multiple Choice)
4.9/5
(30)
Showing 241 - 260 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)