Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit, if it exists. - limh823h+4+2\lim _ { h \rightarrow 8 } \frac { 2 } { \sqrt { 3 h + 4 } + 2 }

(Multiple Choice)
4.8/5
(41)

Find the average rate of change of the function over the given interval. - y=4x2,[0,74]y = 4 x ^ { 2 } , \left[ 0 , \frac { 7 } { 4 } \right]

(Multiple Choice)
4.9/5
(43)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
5.0/5
(38)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx636x2x\lim _ { x \rightarrow } \frac { 6 - \sqrt { 36 - x ^ { 2 } } } { x }

(Multiple Choice)
5.0/5
(39)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=mx,m>0,L=4m,c=4f ( x ) = m x , m > 0 , L = 4 m , c = 4 , and ε=0.05\varepsilon = 0.05

(Multiple Choice)
4.8/5
(33)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Multiple Choice)
4.8/5
(38)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx06x2(cot3x)(csc2x)\lim _ { x \rightarrow 0 } 6 x ^ { 2 } ( \cot 3 x ) ( \csc 2 x )

(Multiple Choice)
4.8/5
(39)

Solve the problem. -You are asked to make some circular cylinders, each with a cross-sectional area of 1 cm21 \mathrm {~cm} ^ { 2 } . To do this, you need to know how much deviation from the ideal cylinder diameter of x0=1.99 cmx _ { 0 } = 1.99 \mathrm {~cm} you can allow and still have the area come within 0.1 cm20.1 \mathrm {~cm} ^ { 2 } of the required 1 cm21 \mathrm {~cm} ^ { 2 } . To find out, let A=π(x2)2A = \pi \left( \frac { x } { 2 } \right) ^ { 2 } and look for the interval in which you must hold xx to make A1<0.1| A - 1 | < 0.1 . What interval do you find?

(Multiple Choice)
4.9/5
(41)

Use the graph to estimate the specified limit. -  Find limxθf(x) and limxθ+f(x)\text { Find } \lim _ { x \rightarrow \theta ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow \theta ^ { + } } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow \theta ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow \theta ^ { + } } f ( x )

(Multiple Choice)
5.0/5
(41)

Find the limit. - limx01+(6/x)5(1/x2)\lim _ { x \rightarrow 0 } \frac { - 1 + ( 6 / x ) } { 5 - \left( 1 / x ^ { 2 } \right) }

(Multiple Choice)
4.9/5
(30)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx1x21x2+32\lim _ { x \rightarrow 1 } \frac { x ^ { 2 } - 1 } { \sqrt { x ^ { 2 } + 3 } - 2 }

(Multiple Choice)
4.8/5
(34)

Divide numerator and denominator by the highest power of x in the denominator to find the limit. - limxx36x47x+x2/3+4\lim _ { x \rightarrow \infty } \frac { \sqrt [ 3 ] { x } - 6 x - 4 } { - 7 x + x ^ { 2 / 3 } + 4 }

(Multiple Choice)
4.8/5
(20)

Find the limit and determine if the function is continuous at the point being approached. - limx4sin(xsin2x+xcos2x+3)\lim _ { x \rightarrow 4 } \sin \left( x \sin ^ { 2 } x + x \cos ^ { 2 } x + 3 \right)

(Multiple Choice)
4.8/5
(38)

Provide an appropriate response. -  Let limx10f(x)=4. Find limx10(5)f(x)\text { Let } \lim _ { x \rightarrow 10 } f ( x ) = 4 \text {. Find } \lim _ { x \rightarrow 10 } ( - 5 ) ^ { f ( x ) }

(Multiple Choice)
4.9/5
(38)

Use the table to estimate the rate of change of y at the specified value of x. - x=1x= 1 . x y .900 -0.05263 1.990 -0.00503 1.999 -0.0005 .000 0.0000 .001 0.0005 .010 0.00498 .100 0.04762

(Multiple Choice)
4.8/5
(40)

Provide an appropriate response. -  Let limx9f(x)=81. Find limx9f(x)\text { Let } \lim _ { x \rightarrow - 9 } f ( x ) = 81 \text {. Find } \lim _ { x \rightarrow 9 } \sqrt { f ( x ) } \text {. }

(Multiple Choice)
5.0/5
(32)

Find the limit. - limx0(1cotx)\lim _ { x \rightarrow 0} ( 1 - \cot x )

(Multiple Choice)
4.9/5
(27)

Answer the question. -  Does limx(1)+f(x) exist? \text { Does } \lim _ { x - ( 1 ) ^ { + } } f ( x ) \text { exist? }  Answer the question. - \text { Does } \lim _ { x - ( 1 ) ^ { + } } f ( x ) \text { exist? }

(True/False)
4.8/5
(34)

Provide an appropriate response. -Use a calculator to graph the function f\mathrm { f } to see whether it appears to have a continuous extension to the origin. If it does, use Trace and Zoom to find a good candidate for the extended function's value at x=0x = 0 . If the function does not appear to have a continuous extension, can it be extended to be continuous at the origin from the right cc the left? If so, what do you think the extended function's value(s) should be? f(x)=6x1xf ( x ) = \frac { 6 ^ { x } - 1 } { x }

(Multiple Choice)
4.8/5
(30)
Showing 261 - 280 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)