Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit. - limx8+cos2x\lim _ { x \rightarrow } \sqrt { 8 + \cos ^ { 2 } x }

(Multiple Choice)
4.8/5
(35)

Find the limit. -f limx2f(x)x=3\lim _ { x \rightarrow 2 } \frac { f ( x ) } { x } = 3 , find limx2f(x)\lim _ { x \rightarrow - 2 } f ( x ) .

(Multiple Choice)
4.8/5
(35)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limxtan4xx\lim _ { x \rightarrow } \frac { \tan 4 x } { x }

(Multiple Choice)
4.8/5
(31)

Find the average rate of change of the function over the given interval. - y=3x2x,[5,6]y= - 3 x ^ { 2 } - x , [ 5,6 ]

(Multiple Choice)
4.8/5
(41)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=1x+1y = \frac { 1 } { x + 1 }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { 1 } { x + 1 }

(Multiple Choice)
4.8/5
(38)

Sketch the graph of a function y = f(x) that satisfies the given conditions. - f(0)=4,f(1)=4,f(1)=4,limxf(x)=0f ( 0 ) = 4 , f ( 1 ) = - 4 , f ( - 1 ) = - 4 , \lim _ { x \rightarrow \infty } f ( x ) = 0 \text {. }  Sketch the graph of a function y = f(x) that satisfies the given conditions. - f ( 0 ) = 4 , f ( 1 ) = - 4 , f ( - 1 ) = - 4 , \lim _ { x \rightarrow \infty } f ( x ) = 0 \text {. }

(Essay)
4.8/5
(42)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. -Provide a short sentence that summarizes the general limit principle given by the formal notation limxa[f(x)±g(x)]=limxaf(x)±limxag(x)=L±M\lim _ { x \rightarrow a } [ f ( x ) \pm g ( x ) ] = \lim _ { x \rightarrow a } f ( x ) \pm \lim _ { x \rightarrow a } g ( x ) = L \pm M , given that limxaf(x)=L\lim _ { x \rightarrow a } f ( x ) = L and limxag(x)=M\lim _ { x \rightarrow a } g ( x ) = M .

(Multiple Choice)
4.8/5
(35)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.8/5
(35)

Use the table of values of f to estimate the limit. -  Let f(x)=x2+8x2, find limx2f(x)\text { Let } f(x)=x^{2}+8 x-2, \text { find } \lim _{x \rightarrow 2} f(x) 1.9 1.99 1.999 2.001 2.01 2.1 ()

(Multiple Choice)
4.9/5
(43)

Find the limit. - limx0x28x+15x39x\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - 8 x + 15 } { x ^ { 3 } - 9 x }

(Multiple Choice)
4.7/5
(41)

Determine if the given function can be extended to a continuous function at x = 0. If so, approximate the extended function's value at x = 0 (rounded to four decimal places if necessary). If not, determine whether the function can be continuously extended from the left or from the right and provide the values of the extended functions at x = 0. Otherwise write "no continuous extension." - f(x)=(1+2x)1/xf ( x ) = ( 1 + 2 x ) ^ { 1 / x }

(Multiple Choice)
4.8/5
(47)

Provide an appropriate response. -The inequality 1x22<sinxx<11 - \frac { x ^ { 2 } } { 2 } < \frac { \sin x } { x } < 1 holds when xx is measured in radians and x<1| x | < 1 . Find limxθsinxx\lim _ { x \rightarrow \theta } \frac { \sin x } { x } if it exists.

(Multiple Choice)
4.9/5
(40)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=8x9,L=15,c=3, and ε=0.01f ( x ) = 8 x - 9 , L = 15 , c = 3 \text {, and } \varepsilon = 0.01

(Multiple Choice)
4.9/5
(30)

Find the limit. - limxx2+18xx\lim _ { x \rightarrow } \sqrt { x ^ { 2 } + 18 x } - x

(Multiple Choice)
4.8/5
(44)

Provide an appropriate response. -Given limxθf(x)=L1,limxθ+f(x)=Lr\lim _ { x \rightarrow \theta ^ { - } } f ( x ) = L _ { 1 } , \lim _ { x \rightarrow \theta ^ { + } } f ( x ) = L _ { r } , and L1LrL _ { 1 } \neq L _ { r } , which of the following statements is true? I. limxf(x)=L1\lim _ { x \rightarrow - } f ( x ) = L _ { 1 } II. limxθf(x)=Lr\lim _ { x \rightarrow \theta } f ( x ) = L _ { r } III. limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) does not exist.

(Multiple Choice)
4.8/5
(33)

Find numbers a and b, or k, so that f is continuous at every point. - f(x)={x2, if x4kx, if x>4f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } , & \text { if } x \leq 4 \\ k x , & \text { if } x > 4 \end{array} \right.

(Multiple Choice)
4.8/5
(36)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx09+2x3x\lim _ { x \rightarrow 0 } \frac { \sqrt { 9 + 2 x } - 3 } { x }

(Multiple Choice)
4.8/5
(36)

Provide an appropriate response. -  If f(x)=2x35x+5, show that there is at least one value of c for which f(x) equals π\text { If } f ( x ) = 2 x ^ { 3 } - 5 x + 5 \text {, show that there is at least one value of } c \text { for which } f ( x ) \text { equals } \pi

(Essay)
4.9/5
(32)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.9/5
(42)

Find the limit and determine if the function is continuous at the point being approached. - limx2πsin(9π2cos(tanx))\lim _ { x \rightarrow 2 \pi } \sin \left( \frac { 9 \pi } { 2 } \cos ( \tan x ) \right)

(Multiple Choice)
4.8/5
(41)
Showing 81 - 100 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)