Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx010+10x10x\lim _ { x \rightarrow 0 } \frac { \sqrt { 10 + 10 x } - \sqrt { 10 } } { x }

(Multiple Choice)
4.9/5
(40)

Use the graph to evaluate the limit. - limx0f(x)\lim _{x \rightarrow 0} f(x)  Use the graph to evaluate the limit. - \lim _{x \rightarrow 0} f(x)

(Multiple Choice)
4.9/5
(33)

Determine the limit by sketching an appropriate graph. - limx4+f(x), where f(x)={3x5 for x<45x4 for x4\lim _ { x \rightarrow 4 ^ { + } } f ( x ) \text {, where } f ( x ) = \left\{ \begin{array} { l l } - 3 x - 5 & \text { for } x < 4 \\5 x - 4 & \text { for } x \geq 4\end{array} \right.  Determine the limit by sketching an appropriate graph. - \lim _ { x \rightarrow 4 ^ { + } } f ( x ) \text {, where } f ( x ) = \left\{ \begin{array} { l l }  - 3 x - 5 & \text { for } x < 4 \\ 5 x - 4 & \text { for } x \geq 4 \end{array} \right.

(Multiple Choice)
4.8/5
(41)

Find the limit. - limx1(1x4/51(x1)3/5)\lim _ { x \rightarrow 1 ^ { - } } \left( \frac { 1 } { x ^ { 4 / 5 } } - \frac { 1 } { ( x - 1 ) ^ { 3 / 5 } } \right)

(Multiple Choice)
4.8/5
(42)

For the function f whose graph is given, determine the limit. -Find limx4+f(x)\lim _ { x - 4 ^ { + } } f ( x ) .  For the function f whose graph is given, determine the limit. -Find  \lim _ { x - 4 ^ { + } } f ( x ) .

(Multiple Choice)
4.8/5
(35)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0sin5xx\lim _ { x \rightarrow 0 } \frac { \sin 5 x } { x }

(Multiple Choice)
4.8/5
(43)

Find the average rate of change of the function over the given interval. - y=5x38x23,[9,5]y = 5 x ^ { 3 } - 8 x ^ { 2 } - 3 , [ - 9,5 ]

(Multiple Choice)
4.7/5
(33)

Provide an appropriate response. -Let limx6f(x)=9\lim _ { x \rightarrow 6 } f ( x ) = 9 and limx6g(x)=7\lim _ { x \rightarrow 6 } g ( x ) = - 7 . Find limx6f(x)g(x)\lim _ { x \rightarrow 6 } \frac { f ( x ) } { g ( x ) } .

(Multiple Choice)
4.8/5
(36)

Find the limit, if it exists. - limxx22x15x+3\lim _ { x \rightarrow } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

(Multiple Choice)
4.8/5
(37)

Use the graph to estimate the specified limit. -  Find limxθf(x)\text { Find } \lim _ { x \rightarrow \theta } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow \theta } f ( x )

(Multiple Choice)
4.8/5
(38)

Find the limit. - limx21x+2\lim _ { x \rightarrow 2 } \frac { 1 } { x + 2 }

(Multiple Choice)
4.8/5
(29)

Find the intervals on which the function is continuous. - y=3x+73xy = \frac { 3 } { x + 7 } - 3 x

(Multiple Choice)
4.7/5
(31)

Use the table to estimate the rate of change of y at the specified value of x. - x=1.x= 1 . x 0 0 .2 0.02 .4 0.08 .6 0.18 .8 0.32 0 0.5 .2 0.72 .4 0.98

(Multiple Choice)
4.8/5
(33)

Find the limit. - limh0138h2+9h+13h\lim _ { h \rightarrow 0 ^ { - } } \frac { \sqrt { 13 } - \sqrt { 8 h ^ { 2 } + 9 h + 13 } } { h }

(Multiple Choice)
4.8/5
(35)

Determine if the given function can be extended to a continuous function at x = 0. If so, approximate the extended function's value at x = 0 (rounded to four decimal places if necessary). If not, determine whether the function can be continuously extended from the left or from the right and provide the values of the extended functions at x = 0. Otherwise write "no continuous extension." - f(x)=cos2x2xf ( x ) = \frac { \cos 2 x } { | 2 x | }

(Multiple Choice)
4.8/5
(44)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0x22x+sinxx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - 2 x + \sin x } { x }

(Multiple Choice)
4.8/5
(39)

Find the limit. - limx8x32x2+3xx32x+6\lim _ { x \rightarrow \infty } \frac { 8 x ^ { 3 } - 2 x ^ { 2 } + 3 x } { - x ^ { 3 } - 2 x + 6 }

(Multiple Choice)
4.8/5
(36)

Determine the limit by sketching an appropriate graph. - limx4+f(x), where f(x)={x2+6 for x40 for x=4\lim _ { x \rightarrow 4 ^ { + } } f ( x ) , \text { where } f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } + 6 & \text { for } x \neq - 4 \\0 & \text { for } x = - 4\end{array} \right.  Determine the limit by sketching an appropriate graph. - \lim _ { x \rightarrow 4 ^ { + } } f ( x ) , \text { where } f ( x ) = \left\{ \begin{array} { l l }  x ^ { 2 } + 6 & \text { for } x \neq - 4 \\ 0 & \text { for } x = - 4 \end{array} \right.

(Multiple Choice)
4.8/5
(37)

Find the limit. - limx2f(x)x2=4\lim _ { x \rightarrow 2 } \frac { f ( x ) } { x ^ { 2 } } = 4 , find limx2f(x)x\lim _ { x \rightarrow 2 } \frac { f ( x ) } { x } .

(Multiple Choice)
5.0/5
(35)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.9/5
(35)
Showing 61 - 80 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)