Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -Use a calculator to graph the function f\mathrm { f } to see whether it appears to have a continuous extension to the origin. I it does, use Trace and Zoom to find a good candidate for the extended function's value at x=0x = 0 . If the function does not appear to have a continuous extension, can it be extended to be continuous at the origin from the right the left? If so, what do you think the extended function's value(s) should be? f(x)=4sinxxf ( x ) = \frac { 4 \sin x } { | x | }

(Multiple Choice)
4.8/5
(36)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=4x+9,L=3,c=3f ( x ) = - 4 x + 9 , L = - 3 , c = 3 , and ε=0.01\varepsilon = 0.01

(Multiple Choice)
4.8/5
(42)

Find the limit. - limxθ+(1+cscx)\lim _ { x \rightarrow \theta ^ { + } } ( 1 + \csc x )

(Multiple Choice)
4.9/5
(34)

Sketch the graph of a function y = f(x) that satisfies the given conditions. - f(0)=0,f(1)=5,f(1)=5,limxf(x)=4,limxf(x)=4f ( 0 ) = 0 , f ( 1 ) = 5 , f ( - 1 ) = - 5 , \lim _ { x \rightarrow \infty } f ( x ) = - 4 , \lim _ { x \rightarrow \infty } f ( x ) = 4 \text {. }  Sketch the graph of a function y = f(x) that satisfies the given conditions. - f ( 0 ) = 0 , f ( 1 ) = 5 , f ( - 1 ) = - 5 , \lim _ { x \rightarrow \infty } f ( x ) = - 4 , \lim _ { x \rightarrow \infty } f ( x ) = 4 \text {. }

(Essay)
4.8/5
(41)

Find the limit. - limx0(x2)\lim _ { x \rightarrow 0 } ( \sqrt { x } - 2 )

(Multiple Choice)
4.7/5
(37)

Solve the problem. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times: Exposure timdRipening Time (minutes) (days) 10 4.2 15 3.5 20 2.6 25 2.1 30 1.1 Plot the data and then find a line approximating the data. With the aid of this line, find the limit of the average ripening Time as the exposure time to ethylene approaches 0. Round your answer to the nearest tenth.  Solve the problem. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times:  \begin{array}{l} \text { Exposure timdRipening Time }\\ \begin{array} { l | l }  \text { (minutes) } & \text { (days) } \\ \hline 10 & 4.2 \\ 15 & 3.5 \\ 20 & 2.6 \\ 25 & 2.1 \\ 30 & 1.1 \end{array} \end{array}  Plot the data and then find a line approximating the data. With the aid of this line, find the limit of the average ripening Time as the exposure time to ethylene approaches 0. Round your answer to the nearest tenth.

(Multiple Choice)
4.9/5
(30)

For the function f whose graph is given, determine the limit. -  Find limx0f(x)\text { Find } \lim _{x \rightarrow 0} f(x) \text {. }  For the function f whose graph is given, determine the limit. - \text { Find } \lim _{x \rightarrow 0} f(x) \text {. }

(Multiple Choice)
4.7/5
(44)

Find the slope of the curve at the given point P and an equation of the tangent line at P. - y=x32x2+4,P(1,3)y = x ^ { 3 } - 2 x ^ { 2 } + 4 , P ( 1,3 )

(Multiple Choice)
4.8/5
(39)

Find the limit. - limx65(6/x2)\lim _ { x \rightarrow \infty } \frac { 6 } { 5 - \left( 6 / x ^ { 2 } \right) }

(Multiple Choice)
4.8/5
(34)

Find the limit if it exists. - limx82x+21\lim _ { x \rightarrow 8 } \sqrt { 2 x + 21 }

(Multiple Choice)
4.8/5
(28)

Find the slope of the curve at the given point P and an equation of the tangent line at P. - y=x2+5x,P(4,36)y = x ^ { 2 } + 5 x , P ( 4,36 )

(Multiple Choice)
4.8/5
(38)

For the function f whose graph is given, determine the limit. -Find limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) .  For the function f whose graph is given, determine the limit. -Find  \lim _ { x \rightarrow 1 } f ( x ) .

(Multiple Choice)
4.7/5
(39)

Divide numerator and denominator by the highest power of x in the denominator to find the limit. - limt4t28t2\lim _ { t\rightarrow \infty } \frac { \sqrt { 4 t ^ { 2 } - 8 } } { t - 2 }

(Multiple Choice)
4.8/5
(49)

Find the limit. - limx4+(x+5)(x+4x+4)\lim _ { x \rightarrow 4 ^ { + } } ( x + 5 ) \left( \frac { | x + 4 | } { x + 4 } \right)

(Multiple Choice)
4.8/5
(33)

Find the intervals on which the function is continuous. - y=2(x+3)2+6y = \frac { 2 } { ( x + 3 ) ^ { 2 } + 6 }

(Multiple Choice)
4.7/5
(36)

For the function f whose graph is given, determine the limit. -Find limxf(x)\lim _ { x \rightarrow \infty } f ( x ) .  For the function f whose graph is given, determine the limit. -Find  \lim _ { x \rightarrow \infty } f ( x ) .

(Multiple Choice)
4.8/5
(45)

Provide an appropriate response. -Given limxθf(x)=L,limxθ+f(x)=Lr\lim _ { x \rightarrow \theta ^ { - } } f ( x ) = L , \lim _ { x - \theta ^ { + } } f ( x ) = L _ { r } , and L1=LrL _ { 1 } = L _ { r } , which of the following statements is false? I. limx9f(x)=Ll\lim _ { x \rightarrow 9 } f ( x ) = L _ { l } II. limxθf(x)=Lr\lim _ { x \rightarrow \theta } f ( x ) = L _ { r } III. limxθf(x)\lim _ { x \rightarrow \theta } f ( x ) does not exist.

(Multiple Choice)
4.8/5
(34)

Provide an appropriate response. -  Use the Intermediate Value Theorem to prove that 5x45x3+3x10=0 has a solution between 2 and 1\text { Use the Intermediate Value Theorem to prove that } 5 x ^ { 4 } - 5 x ^ { 3 } + 3 x - 10 = 0 \text { has a solution between } - 2 \text { and } - 1 \text {. }

(Essay)
4.7/5
(33)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=x2+16x+60x+6,c=6,ε=0.02f ( x ) = \frac { x ^ { 2 } + - 16 x + 60 } { x + - 6 } , c = 6 , \varepsilon = 0.02

(Multiple Choice)
4.7/5
(36)

Answer the question. -Does limxf(x)\lim _ { x \rightarrow \mathbf { - } } f ( x ) exist? f(x)={x2+1,1x<02x,0<x<13,x=12x+41<x<34,3<x<5f ( x ) = \left\{ \begin{array} { l l } - x ^ { 2 } + 1 , & - 1 \leq x < 0 \\2 x , & 0 < x < 1 \\- 3 , & x = 1 \\- 2 x + 4 & 1 < x < 3 \\4 , & 3 < x < 5\end{array} \right.  Answer the question. -Does  \lim _ { x \rightarrow \mathbf { - } } f ( x )  exist?  f ( x ) = \left\{ \begin{array} { l l }  - x ^ { 2 } + 1 , & - 1 \leq x < 0 \\ 2 x , & 0 < x < 1 \\ - 3 , & x = 1 \\ - 2 x + 4 & 1 < x < 3 \\ 4 , & 3 < x < 5 \end{array} \right.

(True/False)
5.0/5
(36)
Showing 41 - 60 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)