Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit and determine if the function is continuous at the point being approached. - limxπ/2cos(3xcos3x)\lim _ { x \rightarrow \pi / 2 } \cos ( 3 x - \cos 3 x )

(Multiple Choice)
4.9/5
(46)

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } occur frequently in calculus. Evaluate this limit for the given value of xx and function ff . - (x)=4x,x=4( x ) = 4 \sqrt { x } , x = 4

(Multiple Choice)
4.8/5
(40)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limxθsin4xsin5x\lim _ { x \rightarrow \theta } \frac { \sin 4 x } { \sin 5 x }

(Multiple Choice)
4.8/5
(40)

Provide an appropriate response. -Let limx3f(x)=16\lim _ { x \rightarrow 3 } f ( x ) = 16 . Find limx3log4f(x)\lim _ { x \rightarrow 3 } \log _ { 4 } f ( x ) .

(Multiple Choice)
4.8/5
(35)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=x+2,L=3,c=7f ( x ) = \sqrt { x + 2 } , L = 3 , c = 7 , and ε=1\varepsilon = 1

(Multiple Choice)
4.9/5
(35)

Find the limit. - limx3x(x3)x3\lim _ { x \rightarrow - ^ { - } } \frac { \sqrt { 3 x } ( x - 3 ) } { | x - 3 | }

(Multiple Choice)
4.9/5
(33)

Find the average rate of change of the function over the given interval. - g(t)=4+tant,[π4,π4]g ( t ) = 4 + \tan t , \left[ - \frac { \pi } { 4 } , \frac { \pi } { 4 } \right]

(Multiple Choice)
4.8/5
(44)

Sketch the graph of a function y = f(x) that satisfies the given conditions. - limxf(x)=1,limxθ+f(x)=1,limxf(x)=1,limxθf(x)=1\lim _ { x \rightarrow \infty } f ( x ) = 1 , \lim _ { x \rightarrow \theta ^ { + } } f ( x ) = - 1 , \lim _ { x \rightarrow } f ( x ) = - 1 , \lim _ { x \rightarrow \theta ^ { - } } f ( x ) = 1  Sketch the graph of a function y = f(x) that satisfies the given conditions. - \lim _ { x \rightarrow \infty } f ( x ) = 1 , \lim _ { x \rightarrow \theta ^ { + } } f ( x ) = - 1 , \lim _ { x \rightarrow } f ( x ) = - 1 , \lim _ { x \rightarrow \theta ^ { - } } f ( x ) = 1

(Essay)
4.9/5
(31)

Provide an appropriate response. -Give an example of a function f(x) that is continuous at all values of x except at x = 7, where it has a removable discontinuity. Explain how you know that f is discontinuous at x = 7 and how you know the discontinuity is removable.

(Essay)
4.8/5
(38)

Find the limit, if it exists. - limx1x41x1\lim _ { x \rightarrow 1 } \frac { x ^ { 4 } - 1 } { x - 1 }

(Multiple Choice)
4.9/5
(46)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. -The statement "the limit of a constant times a function is the constant times the limit" follows from a combination of two fundamental limit principles. What are they?

(Multiple Choice)
4.8/5
(41)

Use the table of values of f to estimate the limit. -  Let f(x)=x2+7x+12x2+5x+4, find limx4f(x)\text { Let } f(x)=\frac{x^{2}+7 x+12}{x^{2}+5 x+4} \text {, find } \lim _{x \rightarrow 4} f(x) -4.1 -4.01 -4.001 -3.999 -3.99 -3.9 ()

(Multiple Choice)
4.8/5
(42)

Find the limit, if it exists. - limθ1+x1x\lim _ { - \theta } \frac { \sqrt { 1 + x } - 1 } { x }

(Multiple Choice)
4.8/5
(32)

Use the graph to estimate the specified limit. -Find limx8f(x)\lim _ { x \rightarrow 8 ^ { - } } f ( x )  Use the graph to estimate the specified limit. -Find  \lim _ { x \rightarrow 8 ^ { - } } f ( x )

(Multiple Choice)
4.8/5
(40)

Find the limit. -f limxf(x)4x2=3\lim _ { x \rightarrow } \frac { f ( x ) - 4 } { x - 2 } = 3 , find limx3f(x)\lim _ { x \rightarrow 3 } f ( x ) .

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response. -  Use the Intermediate Value Theorem to prove that 3x3+9x23x+5=0 has a solution between 4 and 3\text { Use the Intermediate Value Theorem to prove that } 3 x ^ { 3 } + 9 x ^ { 2 } - 3 x + 5 = 0 \text { has a solution between } - 4 \text { and } - 3 \text {. }

(Essay)
4.8/5
(38)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=14x,c=7,ε=0.4f ( x ) = \frac { 14 } { x } , c = 7 , \varepsilon = 0.4

(Multiple Choice)
4.9/5
(30)

Find the limit and determine if the function is continuous at the point being approached. - limθ0tan(sin(0cos(sinθ)))\lim _ { \theta - 0 } \tan ( \sin ( 0 \cos ( \sin \theta ) ) )

(Multiple Choice)
4.8/5
(40)

Find the limit if it exists. - limx9(7x3)\lim _ { x \rightarrow 9 } ( 7 x - 3 )

(Multiple Choice)
4.9/5
(48)

Find the limit. - limx5(x+3)(x+5x+5)\lim _ { x \rightarrow 5 ^ { - } } ( x + 3 ) \left( \frac { | x + 5 | } { x + 5 } \right)

(Multiple Choice)
4.8/5
(33)
Showing 201 - 220 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)