Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -Give an example of a function f(x) that is continuous for all values of x except x = 10, where it has a nonremovable discontinuity. Explain how you know that f is discontinuous at x = 10 and why the discontinuity is nonremovable.

(Essay)
4.8/5
(40)

For the function f whose graph is given, determine the limit. -  Find limx1f(x) and limx1+f(x)\text { Find } \lim _ { x \rightarrow 1 ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow 1 ^ { + } } f ( x ) \text {. }  For the function f whose graph is given, determine the limit. - \text { Find } \lim _ { x \rightarrow 1 ^ { - } } f ( x ) \text { and } \lim _ { x \rightarrow 1 ^ { + } } f ( x ) \text {. }

(Multiple Choice)
4.8/5
(37)

Find the limit. - limx0+(1x1/5+8)\lim _ { x \rightarrow 0 ^ { + } } \left( \frac { 1 } { x ^ { 1 / 5 } } + 8 \right)

(Multiple Choice)
4.8/5
(39)

Sketch the graph of a function y = f(x) that satisfies the given conditions. - f(0)=0,limxf(x)=0,limx6f(x)=,limx6+f(x)=,limx6+f(x)=,limx6f(x)=f ( 0 ) = 0 , \lim _ { x \rightarrow \infty } f ( x ) = 0 , \lim _ { x \rightarrow 6 ^ { - } } f ( x ) = - \infty , \lim _ { x \rightarrow 6 ^ { + } } f ( x ) = - \infty , \lim _ { x - 6 ^ { + } } f ( x ) = \infty , \lim _ { x \rightarrow 6 ^ { - } } f ( x ) = \infty  Sketch the graph of a function y = f(x) that satisfies the given conditions. - f ( 0 ) = 0 , \lim _ { x \rightarrow \infty } f ( x ) = 0 , \lim _ { x \rightarrow 6 ^ { - } } f ( x ) = - \infty , \lim _ { x \rightarrow 6 ^ { + } } f ( x ) = - \infty , \lim _ { x - 6 ^ { + } } f ( x ) = \infty , \lim _ { x \rightarrow 6 ^ { - } } f ( x ) = \infty

(Essay)
4.8/5
(44)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=3x7,L=19,c=4f ( x ) = - 3 x - 7 , L = - 19 , c = 4 , and ε=0.01\varepsilon = 0.01

(Multiple Choice)
4.7/5
(42)

Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. - x=2x=2  Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. - x=2

(Multiple Choice)
5.0/5
(36)

Divide numerator and denominator by the highest power of x in the denominator to find the limit. - limt9t227t3\lim _ { t \rightarrow \infty } \frac { \sqrt { 9 t ^ { 2 } - 27 } } { t - 3 }

(Multiple Choice)
4.9/5
(38)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. -What conditions, when present, are sufficient to conclude that a function f(x)f ( x ) has a limit as xx approaches some value of a?

(Multiple Choice)
4.7/5
(39)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Find the limit. - limx8+5x(x3)x3\lim _ { x \rightarrow 8 ^ { + } } \frac { \sqrt { 5 x } ( x - 3 ) } { | x - 3 | }

(Multiple Choice)
4.9/5
(41)

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=7x2,L=175,c=5, and ε=0.5f ( x ) = 7 x ^ { 2 } , L = 175 , c = 5 \text {, and } \varepsilon = 0.5

(Multiple Choice)
4.8/5
(41)

Provide an appropriate response. -If limxθf(x)=L\lim _ { x \rightarrow \theta } f ( x ) = L , which of the following expressions are true? I. limxθf(x)\lim _ { x \rightarrow \theta ^ { - } } f ( x ) does not exist. II. limxθ+f(x)\lim _ { x \rightarrow \theta ^ { + } } f ( x ) does not exist. III. limxθf(x)=L\lim _ { x \rightarrow \theta ^ { - } } f ( x ) = L IV. limxθ+f(x)=L\lim _ { x \rightarrow \theta ^ { + } } f ( x ) = L

(Multiple Choice)
4.9/5
(32)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - lim648x64x\lim _ { - 64 } \frac { 8 - \sqrt { x } } { 64 - x }

(Multiple Choice)
4.9/5
(42)

Answer the question. -Does limx2f(x)=f(2)\lim _ { x \rightarrow 2 } f ( x ) = f ( 2 ) ? f(x)={x3,2<x02x,0x<26,2<x40,x=2f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } , & - 2 < x \leq 0 \\- 2 x , & 0 \leq x < 2 \\6 , & 2 < x \leq 4 \\0 , & x = 2\end{array} \right.  Answer the question. -Does  \lim _ { x \rightarrow 2 } f ( x ) = f ( 2 )  ?  f ( x ) = \left\{ \begin{array} { l l }  x ^ { 3 } , & - 2 < x \leq 0 \\ - 2 x , & 0 \leq x < 2 \\ 6 , & 2 < x \leq 4 \\ 0 , & x = 2 \end{array} \right.

(True/False)
4.8/5
(37)

Find the limit, if it exists. - limx4x2+9x+20x+4\lim _ { x \rightarrow 4 } \frac { x ^ { 2 } + 9 x + 20 } { x + 4 }

(Multiple Choice)
4.8/5
(41)

Find numbers a and b, or k, so that f is continuous at every point. - f(x)={x2, if x6x+k, if x>6f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } , & \text { if } x \leq 6 \\x + k , & \text { if } x > 6\end{array} \right.

(Multiple Choice)
4.8/5
(40)

Divide numerator and denominator by the highest power of x in the denominator to find the limit. - limx5x+33x2+1\lim _{x \rightarrow\infty} \frac{5 x+3}{\sqrt{3 x^{2}+1}}

(Multiple Choice)
4.8/5
(30)

Find the limit, if it exists. - limh0(1+h)1/31h\lim _ { h \rightarrow 0 } \frac { ( 1 + h ) ^ { 1 / 3 } - 1 } { h }

(Multiple Choice)
4.7/5
(24)

Find the limit. - limx0.5x+9x+2\lim _ { x \rightarrow 0.5 ^ { - } } \sqrt { \frac { x + 9 } { x + 2 } }

(Multiple Choice)
4.9/5
(35)
Showing 141 - 160 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)