Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Sketch the graph of a function y = f(x) that satisfies the given conditions. - limxf(x)=0,limxθ+f(x)=\lim _ { x \rightarrow } f ( x ) = 0 , \quad \lim _ { x - \theta ^ { + } } f ( x ) = \infty  Sketch the graph of a function y = f(x) that satisfies the given conditions. - \lim _ { x \rightarrow } f ( x ) = 0 , \quad \lim _ { x - \theta ^ { + } } f ( x ) = \infty

(Essay)
4.8/5
(23)

Find the intervals on which the function is continuous. - y=5x+2x27y = \frac { 5 } { | x | + 2 } - \frac { x ^ { 2 } } { 7 }

(Multiple Choice)
4.9/5
(37)

Use the table to estimate the rate of change of y at the specified value of x. -Use the table to estimate the rate of change of y at the specified value of x. -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. -Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" and include a statement of any restrictions on the principle.

(Multiple Choice)
5.0/5
(37)

Find the intervals on which the function is continuous. - y=4cosθθ+7y = \frac { 4 \cos \theta } { \theta + 7 }

(Multiple Choice)
4.9/5
(33)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limx0sin3xcot4xcot5x\lim _ { x \rightarrow 0 } \frac { \sin 3 x \cot 4 x } { \cot 5 x }

(Multiple Choice)
4.8/5
(31)

Determine the limit by sketching an appropriate graph. - limx3+f(x), where f(x)={3x3x<0, or 0<x23x=00x<3 or x>2\lim _ { x \rightarrow 3 ^ { + } } f ( x ) \text {, where } f ( x ) = \left\{ \begin{array} { l l } 3 x & - 3 \leq x < 0 , \text { or } 0 < x \leq 2 \\3 & x = 0 \\0 & x < - 3 \text { or } x > 2\end{array} \right.  Determine the limit by sketching an appropriate graph. - \lim _ { x \rightarrow 3 ^ { + } } f ( x ) \text {, where } f ( x ) = \left\{ \begin{array} { l l }  3 x & - 3 \leq x < 0 , \text { or } 0 < x \leq 2 \\ 3 & x = 0 \\ 0 & x < - 3 \text { or } x > 2 \end{array} \right.

(Multiple Choice)
5.0/5
(37)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=2x24x2y = \frac { 2 x ^ { 2 } } { 4 - x ^ { 2 } }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { 2 x ^ { 2 } } { 4 - x ^ { 2 } }

(Multiple Choice)
5.0/5
(31)

Find the slope of the curve at the given point P and an equation of the tangent line at P. - y=x38x,P(1,7)y = x ^ { 3 } - 8 x , P ( 1 , - 7 )

(Multiple Choice)
4.9/5
(36)

Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. - x=2.5x = 2.5  Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. - x = 2.5

(Multiple Choice)
4.9/5
(29)

Divide numerator and denominator by the highest power of x in the denominator to find the limit. - limx16x23+9x2\lim _ { x \rightarrow \infty } \sqrt { \frac { 16 x ^ { 2 } } { 3 + 9 x ^ { 2 } } }

(Multiple Choice)
4.7/5
(29)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=x1x+1y = \frac { x - 1 } { x + 1 }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { x - 1 } { x + 1 }

(Multiple Choice)
4.9/5
(35)

Use the graph to estimate the specified limit. -  Find limxθf(x)\text { Find } \lim _ { x \rightarrow \theta } f ( x )  Use the graph to estimate the specified limit. - \text { Find } \lim _ { x \rightarrow \theta } f ( x )

(Multiple Choice)
4.9/5
(27)

Provide an appropriate response. -  Use the Intermediate Value Theorem to prove that x(x2)2=2 has a solution between 1 and 3\text { Use the Intermediate Value Theorem to prove that } x ( x - 2 ) ^ { 2 } = 2 \text { has a solution between } 1 \text { and } 3 \text {. }

(Essay)
4.9/5
(36)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

Find the average rate of change of the function over the given interval. - y=x2+9x,[1,8]y = x ^ { 2 } + 9 x , [ 1,8 ]

(Multiple Choice)
4.8/5
(33)

Provide an appropriate response. -Let limx1f(x)=2\lim _ { x \rightarrow 1 } f ( x ) = - 2 and limx1g(x)=9\lim _ { x \rightarrow 1 } g ( x ) = - 9 . Find limx1[f(x)g(x)]\lim _ { x \rightarrow 1 } [ f ( x ) - g ( x ) ] .

(Multiple Choice)
4.9/5
(38)

Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. - x=5x= 5  Use the slopes of UQ, UR, US, and UT to estimate the rate of change of y at the specified value of x. - x= 5

(Multiple Choice)
4.7/5
(28)

Find the limit if it exists. - limx5(x+248)3/5\lim _ { x \rightarrow 5 } ( x + 248 ) ^ { 3 / 5 }

(Multiple Choice)
4.9/5
(31)

Find all points where the function is discontinuous. -Find all points where the function is discontinuous. -

(Multiple Choice)
4.8/5
(41)
Showing 21 - 40 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)