Exam 3: Limits and Continuity

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } occur frequently in calculus. Evaluate this limit for the given value of xx and function ff . - (x)=4x+7,x=6( x ) = - 4 x + 7 , x = 6

(Multiple Choice)
4.9/5
(49)

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } occur frequently in calculus. Evaluate this limit for the given value of xx and function ff . - f(x)=x,x=13f ( x ) = \sqrt { x } , x = 13

(Multiple Choice)
4.9/5
(45)

Divide numerator and denominator by the highest power of x in the denominator to find the limit. - limx25x2+x3(x11)(x+1)\lim _ { x \rightarrow \infty } \sqrt { \frac { 25 x ^ { 2 } + x - 3 } { ( x - 11 ) ( x + 1 ) } }

(Multiple Choice)
4.8/5
(34)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limxsin(sinx)sinx\lim _ { x \rightarrow - } \frac { \sin ( \sin x ) } { \sin x }

(Multiple Choice)
4.9/5
(37)

 Use the graph to find a δ>0 such that for all x,0<xc<δf(x)L<ε\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. } -\text { Use the graph to find a } \delta > 0 \text { such that for all } x , 0 < | x - c | < \delta \Rightarrow | f ( x ) - L | < \varepsilon \text {. }  -

(Not Answered)
This question doesn't have any answer yet
Ask our community

A function f(x)\mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x)\mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x)L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon . - f(x)=4x+1,L=13,c=3f ( x ) = 4 x + 1 , L = 13 , c = 3 , and ε=0.01\varepsilon = 0.01

(Multiple Choice)
4.9/5
(49)

Find the limit if it exists. - m27x2/3\mathrm { m } _ { 27 } \mathrm { x } ^ { 2 / 3 }

(Multiple Choice)
4.9/5
(41)

Answer the question. -Is ff continuous at f(1)f ( 1 ) ? f(x)={x2+1,1x<03x,0<x<14,x=13x+61<x<35,3<x<5f ( x ) = \left\{ \begin{array} { l l } - x ^ { 2 } + 1 , & - 1 \leq x < 0 \\3 x , & 0 < x < 1 \\- 4 , & x = 1 \\- 3 x + 6 & 1 < x < 3 \\5 , & 3 < x < 5\end{array} \right.  Answer the question. -Is  f  continuous at  f ( 1 )  ?  f ( x ) = \left\{ \begin{array} { l l }  - x ^ { 2 } + 1 , & - 1 \leq x < 0 \\ 3 x , & 0 < x < 1 \\ - 4 , & x = 1 \\ - 3 x + 6 & 1 < x < 3 \\ 5 , & 3 < x < 5 \end{array} \right.

(True/False)
4.8/5
(42)

Sketch the graph of a function y = f(x) that satisfies the given conditions. - limxf(x)=0,limx5f(x)=,limx5+f(x)=\lim _ { x \rightarrow \infty } f ( x ) = 0 , \lim _ { x \rightarrow 5 ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow 5 ^ { + } } f ( x ) = \infty  Sketch the graph of a function y = f(x) that satisfies the given conditions. - \lim _ { x \rightarrow \infty } f ( x ) = 0 , \lim _ { x \rightarrow 5 ^ { - } } f ( x ) = \infty , \lim _ { x \rightarrow 5 ^ { + } } f ( x ) = \infty

(Essay)
5.0/5
(36)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=2x22x+4y = \frac { 2 - x ^ { 2 } } { 2 x + 4 }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { 2 - x ^ { 2 } } { 2 x + 4 }

(Multiple Choice)
4.8/5
(40)

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit. - limx8x29x2+74\lim _ { x \rightarrow 8 } \frac { x ^ { 2 } - 9 } { \sqrt { x ^ { 2 } + 7 } - 4 }

(Multiple Choice)
4.9/5
(30)

Graph the rational function. Include the graphs and equations of the asymptotes. - y=xx+1y = \frac { x } { x + 1 }  Graph the rational function. Include the graphs and equations of the asymptotes. - y = \frac { x } { x + 1 }

(Multiple Choice)
4.8/5
(32)

Find numbers a and b, or k, so that f is continuous at every point. - f(x)={x2,x<4ax+b,4x2x+2,x>2f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } , & x < - 4 \\a x + b , - 4 \leq x \leq 2 \\x + 2 , & x > 2\end{array} \right.

(Multiple Choice)
4.8/5
(35)

Find the limit. - limx6(9x+5)\lim _ { x \rightarrow 6 } ( 9 x + 5 )

(Multiple Choice)
4.9/5
(46)

Answer the question. -Does limx1+f(x)=f(1)?\lim _ { x \rightarrow 1 ^ { + } } f ( x ) = f ( - 1 ) ? f(x)={x2+1,1x<02x,0<x<14,x=12x+41<x<33,3<x<5\mathrm { f } ( \mathrm { x } ) = \left\{ \begin{array} { l l } - \mathrm { x } ^ { 2 } + 1 , & - 1 \leq \mathrm { x } < 0 \\2 \mathrm { x } , & 0 < \mathrm { x } < 1 \\- 4 , & \mathrm { x } = 1 \\- 2 \mathrm { x } + 4 & 1 < \mathrm { x } < 3 \\3 , & 3 < \mathrm { x } < 5\end{array} \right.  Answer the question. -Does  \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = f ( - 1 ) ?   \mathrm { f } ( \mathrm { x } ) = \left\{ \begin{array} { l l }  - \mathrm { x } ^ { 2 } + 1 , & - 1 \leq \mathrm { x } < 0 \\ 2 \mathrm { x } , & 0 < \mathrm { x } < 1 \\ - 4 , & \mathrm { x } = 1 \\ - 2 \mathrm { x } + 4 & 1 < \mathrm { x } < 3 \\ 3 , & 3 < \mathrm { x } < 5 \end{array} \right.

(True/False)
4.8/5
(29)

Find the limit, if it exists. - limx81x8\lim _ { x \rightarrow 8 } \frac { 1 } { x - 8 }

(Multiple Choice)
4.8/5
(34)

Find the limit and determine if the function is continuous at the point being approached. - limx0sec(xsec2xxtan2x1)\lim _ { x \rightarrow 0 } \sec \left( x \sec ^ { 2 } x - x \tan ^ { 2 } x - 1 \right)

(Multiple Choice)
4.9/5
(33)

 Find the limit using limx=0sinxx=1\text { Find the limit using } \lim _ { x = 0 } \frac { \sin x } { x } = 1 \text {. } - limxsin5xsin4x\lim _ { x \rightarrow } \frac { \sin 5 x } { \sin 4 x }

(Multiple Choice)
4.7/5
(27)

Solve the problem. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times. Exposure timłRipening Time (minutes) (days) 10 4.3 15 3.2 20 2.7 25 2.1 30 1.3 Plot the data and then find a line approximating the data. With the aid of this line, determine the rate of change of Ripening time with respect to exposure time. Round your answer to two significant digits.  Solve the problem. -When exposed to ethylene gas, green bananas will ripen at an accelerated rate. The number of days for ripening becomes shorter for longer exposure times. Assume that the table below gives average ripening times of Bananas for several different ethylene exposure times.  \begin{array} { l | l }  \begin{array} { l }  \text { Exposure timłRipening Time } \\ \text { (minutes) } \end{array} & \text { (days) } \\ \hline 10 & 4.3 \\ 15 & 3.2 \\ 20 & 2.7 \\ 25 & 2.1 \\ 30 & 1.3 \end{array}  Plot the data and then find a line approximating the data. With the aid of this line, determine the rate of change of Ripening time with respect to exposure time. Round your answer to two significant digits.

(Multiple Choice)
4.9/5
(31)

Find the intervals on which the function is continuous. - y=2x225y = \frac { 2 } { x ^ { 2 } - 25 }

(Multiple Choice)
4.8/5
(42)
Showing 281 - 300 of 327
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)