Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the work done by F over the curve in the direction of increasing t. - F=xe3x2i+e7yj+e3zk\mathbf { F } = x \mathrm { e } ^ { 3 \mathrm { x } ^ { 2 } } \mathbf { i } + \mathrm { e } ^ { 7 \mathrm { y } _ { j } } + \mathrm { e } ^ { 3 \mathrm { z } } \mathbf { k } ; the path is C1C2\mathrm { C } _ { 1 } \cup \mathrm { C } _ { 2 } where C1\mathrm { C } _ { 1 } is the straight line from (0,0,0)( 0,0,0 ) to (1,1,0)( 1,1,0 ) and C2\mathrm { C } _ { 2 } is the straight line from (1,1,0)( 1,1,0 ) to (1,1,1)( 1,1,1 )

(Multiple Choice)
4.8/5
(43)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Sketch the vector field in the plane along with its horizontal and vertical components at a representative assortment of points on the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 . - F=yx2+y2ixx2+y2j\mathbf { F } = - \frac { \mathrm { y } } { \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } } \mathbf { i } - \frac { \mathrm { x } } { \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } } \mathrm { j }

(Short Answer)
4.9/5
(38)

Calculate the flow in the field F along the path C. - F=(xy)i(x2+y2)j;C\mathbf { F } = ( \mathrm { x } - \mathrm { y } ) \mathbf { i } - \left( \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } \right) \mathbf { j } ; \mathrm { C } is curve from (4,0)( 4,0 ) to (4,0)( - 4,0 ) on the upper half of the circle x2+y2=16\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } = 16

(Multiple Choice)
4.7/5
(45)

Solve the problem. -The velocity field F\mathbf { F } of a fluid has a constant magnitude k\mathrm { k } and always points towards the origin. Following the smooth curve y=f(x)y = f ( x ) from (a,f(a))( a , f ( a ) ) to (b,f(b))( b , f ( b ) ) , show that the flow along the curve is CFTds=k[(a2+(f(a))2)1/2(b2+(f(b))2)1/2]\int _ { C } \mathbf { F } \cdot \mathbf { T } d s = k \left[ \left( a ^ { 2 } + ( f ( a ) ) ^ { 2 } \right) ^ { 1 / 2 } - \left( b ^ { 2 } + ( f ( b ) ) ^ { 2 } \right) ^ { 1 / 2 } \right]

(Essay)
4.7/5
(31)

Solve the problem. -  The flow F of a fluid in a plane is illustrated below. At which point or points would ×F point out from the \text { The flow } \mathrm { F } \text { of a fluid in a plane is illustrated below. At which point or points would } \nabla \times \mathrm { F } \text { point out from the }  Solve the problem. - \text { The flow } \mathrm { F } \text { of a fluid in a plane is illustrated below. At which point or points would } \nabla \times \mathrm { F } \text { point out from the }

(Multiple Choice)
4.9/5
(42)

Find the flux of the vector field F across the surface S in the indicated direction. - F(x,y,z)=7i+y10z7jy7z10k,S is the rectangular surface x=0,5y5, and 2z2, direction iF ( x , y , z ) = 7 i + y ^ { 10 } z ^ { 7 } j - y ^ { 7 } z ^{10} k , S \text { is the rectangular surface } x = 0 , - 5 \leq y \leq 5 \text {, and } - 2 \leq z \leq 2 \text {, direction } \mathbf { i }

(Multiple Choice)
4.9/5
(39)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=sin5yi+cos7xj;C\mathbf { F } = \sin 5 y \mathbf { i } + \cos 7 x \mathbf { j } ; \mathrm { C } is the rectangle with vertices at (0,0),(π7,0),(π7,π5)( 0,0 ) , \left( \frac { \pi } { 7 } , 0 \right) , \left( \frac { \pi } { 7 } , \frac { \pi } { 5 } \right) , and (0,π5)\left( 0 , \frac { \pi } { 5 } \right)

(Multiple Choice)
4.9/5
(30)

Calculate the circulation of the field F around the closed curve C. -F = (-x - y)i + (x + y)j , curve C is the counterclockwise path around the circle with radius 3 centered at (3, 6)

(Multiple Choice)
4.7/5
(46)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=(x2+y2)i+(xy)j;C is the rectangle with vertices at (0,0),(8,0),(8,5), and (0,5)\mathbf { F } = \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { i } + ( x - y ) \mathbf { j } ; C \text { is the rectangle with vertices at } ( 0,0 ) , ( 8,0 ) , ( 8,5 ) , \text { and } ( 0,5 )

(Multiple Choice)
4.7/5
(31)

Find the work done by F over the curve in the direction of increasing t. - F=ti+12j+k;C:r(t)=e2ti+e2tj+(7t2+t)k,1t1\mathbf { F } = \mathrm { ti } + \frac { 1 } { 2 } \mathrm { j } + \mathbf { k } ; \mathrm { C } : \mathbf { r } ( \mathrm { t } ) = \mathrm { e } ^ { 2 } \mathrm { t } _ { \mathbf { i } } + \mathrm { e } ^ { 2 } \mathrm { t } \mathbf { j } + \left( - 7 \mathrm { t } ^ { 2 } + \mathrm { t } \right) \mathbf { k } , - 1 \leq \mathrm { t } \leq 1

(Multiple Choice)
4.8/5
(35)

Find the flux of the curl of field F through the shell S. - F=(4y)i+(3+x)j+z5k;S\mathbf { F } = ( 4 - \mathrm { y } ) \mathbf { i } + ( 3 + \mathrm { x } ) \mathbf { j } + \mathrm { z } ^ { 5 } \mathbf { k } ; \mathrm { S } is the upper hemisphere of x2+y2+z2=16\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } = 16

(Multiple Choice)
4.8/5
(41)

 Find the mass of the wire that lies along the curve r and has density δ\text { Find the mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - C1:r(t)=(5cost)i+(5sint)j,0tπ2C _ { 1 } : \mathbf { r } ( t ) = ( 5 \cos t ) \mathbf { i } + ( 5 \sin t ) \mathbf { j } , 0 \leq t \leq \frac { \pi } { 2 } \text {; } C2:r(t)=5j+tk,0t1;δ=8t3C _ { 2 } : \mathbf { r } ( \mathrm { t } ) = 5 \mathrm { j } + \mathrm { tk } , 0 \leq \mathrm { t } \leq 1 ; \delta = 8 \mathrm { t } ^ { 3 }

(Multiple Choice)
4.8/5
(32)

Find the gradient field of the function. - f(x,y,z)=x6y9+x6z8f ( x , y , z ) = x ^ { 6 } y ^ { 9 } + \frac { x ^ { 6 } } { z ^ { 8 } }

(Multiple Choice)
4.8/5
(39)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=x2+y2i+x2+y2j;C is the region defined by the polar coordinate inequalities 9r10 and 0θπ\mathrm { F } = - \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } \mathrm { i } + \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } \mathrm { j } ; \mathrm { C } \text { is the region defined by the polar coordinate inequalities } 9 \leq \mathrm { r } \leq 10 \text { and } 0 \leq \theta \leq \pi

(Multiple Choice)
4.8/5
(40)

Find the work done by F over the curve in the direction of increasing t. - F=116x2i+3z4xj+148x2k;C:r(t)=cos4t4i+sin4t4j+3tk,0tπ16\mathbf { F } = - \frac { 1 } { 16 \mathrm { x } ^ { 2 } } \mathbf { i } + \frac { 3 \mathrm { z } } { 4 \mathrm { x } } \mathbf { j } + \frac { 1 } { 48 \mathrm { x } ^ { 2 } } \mathbf { k } ; \mathrm { C } : \mathbf { r } ( \mathrm { t } ) = \frac { \cos 4 \mathrm { t } } { 4 } \mathbf { i } + \frac { \sin 4 \mathrm { t } } { 4 } \mathbf { j } + 3 \mathrm { t } \mathbf { k } , 0 \leq \mathrm { t } \leq \frac { \pi } { 16 }

(Multiple Choice)
4.8/5
(41)

Find the flux of the vector field F across the surface S in the indicated direction. - F=5xi+5yj+z2k;S\mathbf { F } = 5 x \mathbf { i } + 5 y \mathbf { j } + \mathrm { z } ^ { 2 } \mathbf { k } ; \mathrm { S } is portion of the cylinder x2+y2=25\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } = 25 between z=0\mathrm { z } = 0 and z=5\mathrm { z } = 5 ; direction is outward

(Multiple Choice)
4.9/5
(33)

Using Green's Theorem, find the outward flux of F across the closed curve C. - F=x2+y2i+x2+y2j;C is the region defined by the polar coordinate inequalities 1r4 and 0θπ\mathbf { F } = - \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } \mathrm { i } + \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } \mathrm { j } ; \mathrm { C } \text { is the region defined by the polar coordinate inequalities } 1 \leq \mathrm { r } \leq 4 \text { and } 0 \leq \theta \leq \pi

(Multiple Choice)
4.8/5
(43)

Evaluate the line integral along the curve C. - C(x2+y2z2)ds,C\int _ { C } \left( \frac { x ^ { 2 } + y ^ { 2 } } { z ^ { 2 } } \right) d s , C is the curve r(t)=(2sin6t)i+(2cos6t)j+5tk,2t4r ( t ) = ( 2 \sin 6 t ) i + ( 2 \cos 6 t ) j + 5 t k , 2 \leq t \leq 4

(Multiple Choice)
4.8/5
(31)

Evaluate the surface integral of G over the surface S. - SS is the parabolic cylinder y=3x2,0x2y = 3 x ^ { 2 } , 0 \leq x \leq 2 and 0z4;G(x,y,z)=3x0 \leq z \leq 4 ; G ( x , y , z ) = 3 x

(Multiple Choice)
4.7/5
(34)

Calculate the area of the surface S. - SS is the portion of the plane 7x+8y+7z=47 x + 8 y + 7 z = 4 that lies within the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Multiple Choice)
4.9/5
(37)
Showing 201 - 220 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)