Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Calculate the area of the surface S. - SS is the cap cut from the paraboloid z=2510x210y2z = \frac { 2 } { 5 } - 10 x ^ { 2 } - 10 y ^ { 2 } by the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } .

(Multiple Choice)
4.7/5
(37)

Evaluate the surface integral of the function g over the surface S. - G(x,y,z)=x3y3z3;SG ( x , y , z ) = x ^ { 3 } y ^ { 3 } z ^ { 3 } ; S is the surface of the rectangular prism formed from the planes x=±3,y=±3x = \pm 3 , y = \pm 3 , and z=±3z = \pm 3

(Multiple Choice)
4.9/5
(36)

Solve the problem. -Let f(x,y)=ln(x2+y2)f ( x , y ) = \ln \left( x ^ { 2 } + y ^ { 2 } \right) . Which one of the following curves is a simple closed path in the domain of the function f\mathrm { f } ?

(Multiple Choice)
4.8/5
(40)

Apply Green's Theorem to evaluate the integral. - C(7x+y3)dx+(3xy2+7y)dy\oint _ { C } \left( 7 x + y ^ { 3 } \right) d x + \left( 3 x y ^ { 2 } + 7 y \right) d y C: Any simple closed curve in the plane for which Green's Theorem holds

(Multiple Choice)
4.7/5
(33)

Evaluate the surface integral of G over the surface S. -S is the plane x+y+z=1x + y + z = 1 above the rectangle 0x30 \leq x \leq 3 and 0y5;G(x,y,z)=6z0 \leq y \leq 5 ; G ( x , y , z ) = 6 z

(Multiple Choice)
4.8/5
(39)

Parametrize the surface S. - S is the portion of the paraboloid z=5x2+5y2 that lies between z=2 and z=7S \text { is the portion of the paraboloid } z = 5 x ^ { 2 } + 5 y ^ { 2 } \text { that lies between } z = 2 \text { and } z = 7 \text {. }

(Essay)
4.9/5
(38)

Evaluate. The differential is exact. - (1,1,1)(2,5,5)3x2y3dx3x3y4dy+1zdz\int _ { ( 1,1,1 ) } ^ { ( 2,5,5 ) } \frac { 3 x ^ { 2 } } { y ^ { 3 } } d x - \frac { 3 x ^ { 3 } } { y ^ { 4 } } d y + \frac { 1 } { z } d z

(Multiple Choice)
4.7/5
(42)

Test the vector field F to determine if it is conservative. - F=(9x8(yx2)9z)i+(5x9(yx2)8z)j(x9(yx2)5z2)k\mathbf { F } = \left( \frac { 9 x ^ { 8 } \left( y - x ^ { 2 } \right) ^ { 9 } } { z } \right) i + \left( \frac { 5 x ^ { 9 } \left( y - x ^ { 2 } \right) ^ { 8 } } { z } \right) j - \left( \frac { x ^ { 9 } \left( y - x ^ { 2 } \right) ^ { 5 } } { z ^ { 2 } } \right) \mathbf { k }

(Multiple Choice)
4.9/5
(38)

Solve the problem. -  Show that df=5(y7+z)x6z4dx+7y6x5z4dy(4y7x5z5+3x5z4)dz is exact. \text { Show that } \mathrm { df } = - \frac { 5 \left( \mathrm { y } ^ { 7 } + \mathrm { z } \right) } { \mathrm { x } ^ { 6 } \mathrm { z } ^ { 4 } } \mathrm { dx } + \frac { 7 \mathrm { y } ^ { 6 } } { \mathrm { x } ^ { 5 } \mathrm { z } ^ { 4 } } \mathrm { dy } - \left( \frac { 4 \mathrm { y } ^ { 7 } } { \mathrm { x } ^ { 5 } \mathrm { z } ^ { 5 } } + \frac { 3 } { \mathrm { x } ^ { 5 } \mathrm { z } ^ { 4 } } \right) \mathrm { dz } \text { is exact. }

(Short Answer)
4.7/5
(37)

Find the gradient field of the function. - f(x,y,z)=(x8y2y9z3)ez2f ( x , y , z ) = \left( x ^ { 8 } y ^ { 2 } - y ^ { 9 } z ^ { 3 } \right) e ^ { - z ^ { 2 } }

(Multiple Choice)
4.7/5
(37)

Solve the problem. -Find values for aa , b, and c so that ×F=0\nabla \times \mathbf { F } = \mathbf { 0 } for F=axi+byj+czk\mathbf { F } = a x i + b y j + c z k .

(Multiple Choice)
4.8/5
(34)

Evaluate the line integral along the curve C. - C(xy+yz)ds,C\int _ { C } ( x y + y z ) d s , C is the path from (1,1,0)( 1,1,0 ) to (e2,e2,1)\left( e ^ { 2 } , e ^ { 2 } , 1 \right) given by: C1:r(t)=e2ti+e2tj,0t1C _ { 1 } : \mathbf { r } ( \mathrm { t } ) = \mathrm { e } ^ { 2 } \mathrm { t } _ { \mathbf { i } } + \mathrm { e } ^ { 2 } \mathrm { t } \mathbf { j } , 0 \leq \mathrm { t } \leq 1 C2:r(t)=e2i+e2j+9tk,0t1C _ { 2 } : \mathbf { r } ( \mathrm { t } ) = \mathrm { e } ^ { 2 } \mathbf { i } + \mathrm { e } ^ { 2 } \mathbf { j } + 9 \mathrm { t } \mathbf { k } , 0 \leq \mathrm { t } \leq 1

(Multiple Choice)
4.8/5
(41)

 Find the center of mass of the wire that lies along the curve r and has density δ\text { Find the center of mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - r(t)=(5t21)i+4tk,1t1;δ(x,y,z)=320x+36r ( t ) = \left( 5 t ^ { 2 } - 1 \right) \mathbf { i } + 4 t k , - 1 \leq t \leq 1 ; \delta ( x , y , z ) = 3 \sqrt { 20 x + 36 }

(Multiple Choice)
4.7/5
(35)

 Find the required quantity given the wire that lies along the curve r and has density δ.\text { Find the required quantity given the wire that lies along the curve } r \text { and has density } \delta . -Moment of inertia Iy\mathrm { I } _ { \mathrm { y } } about the y\mathrm { y } -axis, where r(t)=(44t)i+3tj,0t1;δ(x,y,z)=4\mathbf { r } ( \mathrm { t } ) = ( 4 - 4 \mathrm { t } ) \mathrm { i } + 3 \mathrm { t } \mathrm { j } , 0 \leq \mathrm { t } \leq 1 ; \delta ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = 4

(Multiple Choice)
4.9/5
(39)

Evaluate the line integral of f(x,y) along the curve C. - f(x,y)=y+x,C:x2+y2=100 in the first quadrant from (10,0) to (0,10)f ( x , y ) = y + x , C : x ^ { 2 } + y ^ { 2 } = 100 \text { in the first quadrant from } ( 10,0 ) \text { to } ( 0,10 )

(Multiple Choice)
4.8/5
(26)

Solve the problem. -Suppose that the parametrized plane curve C:(f(u),g(u))C : ( f ( u ) , g ( u ) ) is revolved about the xx -axis, where g(u)>0g ( u ) > 0 and a u\leq u \leq b. Show that the surface area of the surface of revolution is 2πabg(u)[g(u)]2+[f(u)]2du2 \pi \int _ { a } ^ { b } g ( u ) \sqrt { \left[ g ^ { \prime } ( u ) \right] ^ { 2 } + \left[ f ^ { \prime } ( u ) \right] ^ { 2 } } \mathrm { du }

(Essay)
4.8/5
(33)

Find the flux of the vector field F across the surface S in the indicated direction. - F(x,y,z)=12x+12yj+12zk,S\mathbf { F } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = 12 \mathrm { x } + 12 \mathrm { y } \mathbf { j } + 12 \mathrm { z } \mathbf { k } , \mathrm { S } is the surface of the sphere x2+y2+z2=1\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } = 1 in the first octant, direction away from the origin

(Multiple Choice)
4.9/5
(37)

Evaluate the line integral along the curve C. - C(18x2+5e5y+1z+1)ds,C\int _ { C } \left( 18 x ^ { 2 } + 5 e ^ { 5 y } + \frac { 1 } { z + 1 } \right) d s , C is the path from (0,0,0)( 0,0,0 ) to (1,1,1)( 1,1,1 ) given by: C1:r(t)=ti,0t1C _ { 1 } : r ( t ) = t i , 0 \leq t \leq 1 C2:r(t)=i+tj,0t1C _ { 2 } : r ( t ) = i + t j , 0 \leq t \leq 1 C3:r(t)=i+j+tk,0t1C _ { 3 } : r ( t ) = i + j + t k , 0 \leq t \leq 1

(Multiple Choice)
4.9/5
(38)

Evaluate the line integral along the curve C. - C(xz+y2)ds,C\int _ { C } \left( x z + y ^ { 2 } \right) d s , C is the curve r(t)=(82t)i+tj2tk,0t1r ( t ) = ( 8 - 2 t ) i + t j - 2 t k , 0 \leq t \leq 1

(Multiple Choice)
4.8/5
(32)

Using Green's Theorem, calculate the area of the indicated region. -The area bounded above by y=3xy = 3 x and below by y=10x2y = 10 x ^ { 2 }

(Multiple Choice)
4.8/5
(32)
Showing 181 - 200 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)