Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the potential function f for the field F. - F=(e2sinx)i+2xye2j+k\mathbf { F } = \left( \mathrm { e } ^ { 2 } - \sin \mathrm { x } \right) \mathbf { i } + 2 x y \mathrm { e } ^ { 2 } \mathbf { j } + \mathbf { k }

(Multiple Choice)
4.9/5
(36)

Find the limit. - r(t)=3ti+2tj+2tk;0t1r ( t ) = - 3 t i + 2 t j + 2 t k ; 0 \leq t \leq 1

(Multiple Choice)
4.9/5
(31)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. -F = zi + xyj + zyk; D: the solid cube cut by the coordinate planes and the planes x = 2, y = 2, and z = 2

(Multiple Choice)
4.9/5
(41)

Find the divergence of the field F. - F=xz6i+6yj4z7k\mathbf { F } = x z ^ { 6 } \mathbf { i } + 6 y \mathbf { j } - 4 z ^ { 7 } \mathbf { k }

(Multiple Choice)
4.9/5
(39)

Apply Green's Theorem to evaluate the integral. - C(y2+4)dx+(x2+6)dy\oint _ { C } \left( y ^ { 2 } + 4 \right) d x + \left( x ^ { 2 } + 6 \right) d y CC : The triangle bounded by x=0,x+y=1,y=0x = 0 , x + y = 1 , y = 0

(Multiple Choice)
5.0/5
(33)

 Find the required quantity given the wire that lies along the curve r and has density δ.\text { Find the required quantity given the wire that lies along the curve } r \text { and has density } \delta . -Moment of inertia IZ\mathrm { I } _ { \mathrm { Z } } about the z\mathrm { z } -axis, where r(t)=(5cost)i+(5sint)j,0tπ2;δ=2(1+sin2t)\mathbf { r } ( \mathrm { t } ) = ( 5 \cos \mathrm { t } ) \mathbf { i } + ( 5 \sin \mathrm { t } ) \mathbf { j } , 0 \leq \mathrm { t } \leq \frac { \pi } { 2 } ; \delta = 2 ( 1 + \sin 2 \mathrm { t } )

(Multiple Choice)
4.9/5
(46)

Calculate the flow in the field F along the path C. - F=8i+3j+8k;C\mathbf { F } = 8 \mathbf { i } + 3 \mathbf { j } + 8 \mathbf { k } ; \mathrm { C } is the curve r(t)=6cos7ti+6sin7tj+3tk,0t67π\mathbf { r } ( \mathrm { t } ) = 6 \cos 7 \mathrm { ti } + 6 \sin 7 \mathrm { t } \mathbf { j } + 3 \mathrm { tk } , 0 \leq t \leq \frac { 6 } { 7 } \pi

(Multiple Choice)
5.0/5
(43)

Find the surface area of the surface S. - SS is the portion of the surface 3x+4z=43 x + 4 z = 4 that lies above the rectangle 5x75 \leq x \leq 7 and 4y54 \leq y \leq 5 in the xyx y -plane.

(Multiple Choice)
4.8/5
(33)

Use Stokes' Theorem to calculate the circulation of the field F around the curve C in the indicated direction. - F=2yi+8xj+z3k;C:\mathbf { F } = 2 \mathrm { y } \mathbf { i } + 8 x \mathbf { j } + \mathrm { z } ^ { 3 } \mathbf { k } ; \mathrm { C } : the counterclockwise path around the perimeter of the triangle in the xyx - y plane formed from the xx -axis, yy -axis, and the line y=54xy = 5 - 4 x

(Multiple Choice)
4.8/5
(39)

Calculate the flux of the field F across the closed plane curve C. - F=xi+yj\mathbf { F } = \mathbf { x } \mathbf { i } + \mathbf { y } \mathbf { j } ; the curve C\mathrm { C } is the circle (x+5)2+(y9)2=81( \mathrm { x } + 5 ) ^ { 2 } + ( \mathrm { y } - 9 ) ^ { 2 } = 81

(Multiple Choice)
4.7/5
(32)

Using Green's Theorem, find the outward flux of F across the closed curve C. - F=(yeycosx)i+(yeysinx)j;C\mathbf { F } = \left( - \mathrm { y } - \mathrm { e } ^ { \mathrm { y } } \cos \mathrm { x } \right) \mathbf { i } + \left( \mathrm { y } - \mathrm { e } ^ { \mathrm { y } } \sin \mathrm { x } \right) \mathbf { j } ; \mathrm { C } is the right lobe of the lemniscate r2=cos2θ\mathrm { r } ^ { 2 } = \cos 2 \theta that lies in the first quadrant.

(Multiple Choice)
4.9/5
(36)

Find the flux of the curl of field F through the shell S. - F=(4y+2)i5xj+(ez1)k;S:r(r,θ)=2sinφcosθi+2sinφsinθj+2cosφk,0θ2π and 0φπ2\mathbf { F } = ( 4 \mathrm { y } + 2 ) \mathbf { i } - 5 \mathrm { xj } + \left( \mathrm { e } ^ { \mathrm { z } } - 1 \right) \mathbf { k } ; \mathrm { S } : \mathbf { r } ( \mathrm { r } , \theta ) = 2 \sin \varphi \cos \theta \mathbf { i } + 2 \sin \varphi \sin \theta \mathbf { j } + 2 \cos \varphi \mathbf { k } , 0 \leq \theta \leq 2 \pi \text { and } 0 \leq \varphi \leq \frac { \pi } { 2 }

(Multiple Choice)
4.9/5
(37)

Find the divergence of the field F. - F=3x4i8y4j+6z4kF = - 3 x ^ { 4 } \mathbf { i } - 8 y ^ { 4 } \mathbf { j } + 6 z ^ { 4 } \mathbf { k }

(Multiple Choice)
4.9/5
(31)

Calculate the flow in the field F along the path C. - F=(xy2z3);C is the line segment from (6,1,1) to (7,1,1)\mathrm { F } = \nabla \left( x \mathrm { y } ^ { 2 } \mathrm { z } ^ { 3 } \right) ; \mathrm { C } \text { is the line segment from } ( 6,1,1 ) \text { to } ( 7,1 , - 1 )

(Multiple Choice)
4.8/5
(32)

Evaluate the line integral along the curve C. - C(y+z)ds,C\int _ { C } ( y + z ) d s , C is the straight-line segment x=0,y=5t,z=tx = 0 , y = 5 - t , z = t from (0,5,0)( 0,5,0 ) to (0,0,5)( 0,0,5 )

(Multiple Choice)
4.8/5
(33)

Find the potential function f for the field F. - F=(xyz(1+x2)3/2)i+(z(1+x2)1/2)j+(y(1+x2)1/2)k\mathbf { F } = - \left( \frac { \mathrm { xyz } } { \left( 1 + \mathrm { x } ^ { 2 } \right) ^ { 3 / 2 } } \right) \mathbf { i } + \left( \frac { \mathrm { z } } { \left( 1 + \mathrm { x } ^ { 2 } \right) ^ { 1 / 2 } } \right) \mathbf { j } + \left( \frac { \mathrm { y } } { \left( 1 + \mathrm { x } ^ { 2 } \right) ^ { 1 / 2 } } \right) \mathbf { k }

(Multiple Choice)
4.9/5
(39)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=ln(x2+y2)i+tan1(xy)j;C is the region defined by the polar coordinate inequalities 3r8 and 0θπ\mathbf { F } = \ln \left( \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } \right) \mathbf { i } + \tan ^ { - 1 } \left( \frac { \mathrm { x } } { \mathrm { y } } \right) \mathrm { j } ; \mathrm { C } \text { is the region defined by the polar coordinate inequalities } 3 \leq \mathrm { r } \leq 8 \text { and } 0 \leq \theta \leq \pi

(Multiple Choice)
4.7/5
(33)

Solve the problem. -  What can be said about the flux of F=xi+yj+zk(x2+y2+z2)3 across a sphere centered at the origin? Will differing \text { What can be said about the flux of } \mathbf { F } = \frac { x \mathbf { i } + \mathrm { y } \mathbf { j } + \mathrm { zk } } { \left( \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } } \right) ^ { 3 } } \text { across a sphere centered at the origin? Will differing } radii change the flux?

(Essay)
4.9/5
(31)

Find the equation for the plane tangent to the parametrized surface S at the point P. - S is the sphere r(θ,φ)=7cosθsinφi+7sinθsinφj+7cosφk;P is the point corresponding to (θ,φ)=(π3,π4)\mathrm { S } \text { is the sphere } \mathbf { r } ( \theta , \varphi ) = 7 \cos \theta \sin \varphi \mathbf { i } + 7 \sin \theta \sin \varphi \mathbf { j } + 7 \cos \varphi \mathbf { k } ; \mathrm { P } \text { is the point corresponding to } ( \theta , \varphi ) = \left( \frac { \pi } { 3 } , \frac { \pi } { 4 } \right) \text {. }

(Essay)
4.9/5
(37)

Solve the problem. -Assuming C\mathrm { C } is a closed path, what is special about the integral C9x8y7dx+7x9y6dy\int _ { C } 9 x ^ { 8 } y ^ { 7 } d x + 7 x ^ { 9 } y ^ { 6 } d y ? Give reasons for your answer.

(Essay)
4.7/5
(38)
Showing 101 - 120 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)