Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Using Green's Theorem, find the outward flux of F across the closed curve C. - F=sin10yi+cos6xj;C\mathbf { F } = \sin 10 \mathrm { yi } + \cos 6 \mathrm { x } \mathbf { j } ; \mathrm { C } is the rectangle with vertices at (0,0),(π10,0),(π10,π6)( 0,0 ) , \left( \frac { \pi } { 10 } , 0 \right) , \left( \frac { \pi } { 10 } , \frac { \pi } { 6 } \right) , and (0,π6)\left( 0 , \frac { \pi } { 6 } \right)

(Multiple Choice)
4.8/5
(30)

Find the potential function f for the field F. - F=1xi+1yj1zk\mathbf { F } = - \frac { 1 } { x } \mathbf { i } + \frac { 1 } { \mathrm { y } } \mathrm { j } - \frac { 1 } { \mathrm { z } } \mathbf { k }

(Multiple Choice)
4.8/5
(40)

Evaluate. The differential is exact. - (0,0,0)(4,6,2)(2xy22xz2)dx+2x2ydy2x2zdz\int _ { ( 0,0,0 ) } ^ { ( 4,6,2 ) } \left( 2 x y ^ { 2 } - 2 x z ^ { 2 } \right) d x + 2 x ^ { 2 } y d y - 2 x ^ { 2 } z d z

(Multiple Choice)
4.8/5
(30)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=xx2+y2i+yx2+y2j+zx2+y2k;\mathbf { F } = x \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } \mathrm { i } + \mathrm { y } \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } \mathrm { j } + \mathrm { z } \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } \mathbf { k } ; D: the thick cylinder 5x2+y26,3z45 \leq \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } \leq 6,3 \leq \mathrm { z } \leq 4

(Multiple Choice)
4.8/5
(38)

Find the flux of the curl of field F through the shell S. - F=7yi5zj5xk;S:r(r,θ)=rcosθi+rsinθj+(36r2)k,0r6\mathbf { F } = 7 \mathrm { yi } - 5 \mathrm { z } \mathbf { j } - 5 \mathrm { x } \mathbf { k } ; \mathrm { S } : \mathbf { r } ( \mathrm { r } , \theta ) = \mathrm { r } \cos \theta \mathbf { i } + \mathrm { r } \sin \theta \mathbf { j } + \left( 36 - \mathrm { r } ^ { 2 } \right) \mathbf { k } , 0 \leq \mathrm { r } \leq 6 and 0θ2π0 \leq \theta \leq 2 \pi

(Multiple Choice)
4.8/5
(40)

Evaluate. The differential is exact. - (0,0,0)(1,1,1)9x8y8z5dx+8x9y7z5dy+5x9y8z4dz\int _ { ( 0,0,0 ) } ^ { ( 1,1,1 ) } 9 x ^ { 8 } y ^ { 8 } z ^ { 5 } d x + 8 x ^ { 9 } y ^ { 7 } z ^ { 5 } d y + 5 x ^ { 9 } y ^ { 8 } z ^ { 4 } d z

(Multiple Choice)
4.7/5
(32)

Find the flux of the vector field F across the surface S in the indicated direction. - F=z29k;S\mathbf { F } = \frac { z ^ { 2 } } { 9 } \mathbf { k } ; \mathrm { S } is the upper hemisphere of x2+y2+z2=9\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } = 9 ; direction is outward

(Multiple Choice)
4.8/5
(39)

Solve the problem. -The base of the closed cubelike surface is the unit square in the xy-plane. The four sides lie in the planes x = 0, x = 1, y = 0, and y = 1. The top is an arbitrary smooth surface whose identity is unknown. Let F = xi - 4yj + (z + 11)k and suppose the outward flux through the side parallel to the yz-plane is 2 and through The side parallel to the xz-plane is -5. What is the outward flux through the top?

(Multiple Choice)
4.8/5
(40)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=(yx)i+(zy)j+(zx)k;D\mathbf { F } = ( \mathrm { y } - \mathrm { x } ) \mathbf { i } + ( \mathrm { z } - \mathrm { y } ) \mathbf { j } + ( \mathrm { z } - \mathrm { x } ) \mathbf { k } ; \mathrm { D } ; the region cut from the solid cylinder x2+y29\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } \leq 9 by the planes z=0\mathrm { z } = 0 and z=5\mathrm { z } = 5

(Multiple Choice)
4.9/5
(37)

Find the flux of the curl of field F through the shell S. - F=exi+eyj+6xyk;S is the portion of the paraboloid 2x2y2=z that lies above the xy plane \mathbf{F}=\mathrm{e}^{\mathrm{x}} \mathbf{i}+\mathrm{e}^{\mathrm{y}} \mathbf{j}+6 \mathrm{xy} \mathbf{k} ; \mathrm{S} \text { is the portion of the paraboloid } 2-\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{z} \text { that lies above the } x y-\text { plane }

(Multiple Choice)
4.8/5
(42)

Parametrize the surface S. - S is the lower portion of the sphere x2+y2+z2=49 cut by the cone z=x2+y2S \text { is the lower portion of the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 \text { cut by the cone } z = \sqrt { x ^ { 2 } + y ^ { 2 } } \text {. }

(Essay)
4.9/5
(36)

Evaluate the line integral of f(x,y) along the curve C. - f(x,y)=y2+x2,Cf ( x , y ) = y ^ { 2 } + x ^ { 2 } , C : the perimeter of the circle x2+y2=16x ^ { 2 } + y ^ { 2 } = 16

(Multiple Choice)
4.9/5
(35)

Solve the problem. -For the surface z=f(x,y)z = f ( x , y ) , show that the surface integral g(x,y,z)dσ=\iint g ( x , y , z ) d \sigma = g(x,y,f(x,y))[fx(x,y)]2+[fy(x,y)]2+1dxdy\iint \mathrm { g } ( \mathrm { x } , \mathrm { y } , \mathrm { f } ( \mathrm { x } , \mathrm { y } ) ) \sqrt { \left[ \mathrm { f } _ { \mathrm { x } } ( \mathrm { x } , \mathrm { y } ) \right] ^ { 2 } + \left[ \mathrm { f } _ { \mathrm { y } } ( \mathrm { x } , \mathrm { y } ) \right] ^ { 2 } + 1 } \mathrm { dx } d y

(Essay)
4.8/5
(42)

Find the potential function f for the field F. - F=1zi2jxz2k\mathbf { F } = \frac { 1 } { \mathrm { z } } \mathbf { i } - 2 \mathbf { j } - \frac { \mathrm { x } } { \mathrm { z } ^ { 2 } } \mathbf { k }

(Multiple Choice)
4.8/5
(43)

Solve the problem. -Assuming CC is a simple closed path, what is special about the integral C(4x+5sin8xcos8y))dx+(3x+5cos8xsin8y))dy\left. \left. \int _ { C } ( 4 x + 5 \sin 8 x \cos 8 y ) \right) d x + ( 3 x + 5 \cos 8 x \sin 8 y ) \right) d y ? Give reasons for your answer.

(Short Answer)
4.7/5
(40)

Test the vector field F to determine if it is conservative. - F=(8x7y8z7)i+(8x8y7z7)j(7x8y8z8)k\mathbf { F } = \left( \frac { 8 \mathrm { x } ^ { 7 } \mathrm { y } ^ { 8 } } { \mathrm { z } ^ { 7 } } \right) \mathrm { i } + \left( \frac { 8 \mathrm { x } ^ { 8 } \mathrm { y } ^ { 7 } } { \mathrm { z } ^ { 7 } } \right) \mathrm { j } - \left( \frac { 7 \mathrm { x } ^ { 8 } \mathrm { y } ^ { 8 } } { \mathrm { z } ^ { 8 } } \right) \mathbf { k }

(Multiple Choice)
4.8/5
(39)

Find the equation for the plane tangent to the parametrized surface S at the point P. - S is the parabolic cylinder r(x,z)=xi+10x2j+zkP is the point corresponding to (x,z)=(4,4)S \text { is the parabolic cylinder } \mathbf { r } ( x , z ) = x \mathbf { i } + 10 x ^ { 2 } \mathbf { j } + z \mathbf { k } \text {; } P \text { is the point corresponding to } ( x , z ) = ( - 4 , - 4 ) \text {. }

(Short Answer)
4.9/5
(30)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Sketch the vector field in the plane along with its horizontal and vertical components at a representative assortment of points on the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 . -F = -xi + yj

(Not Answered)
This question doesn't have any answer yet
Ask our community

Using Green's Theorem, calculate the area of the indicated region. -The area bounded above by y=8y = 8 and below by y=825x2y = \frac { 8 } { 25 } x ^ { 2 }

(Multiple Choice)
4.9/5
(34)

Find the flux of the vector field F across the surface S in the indicated direction. - F=3xi+3yj+5k\mathrm { F } = 3 \mathrm { xi } + 3 \mathrm { yj } + 5 \mathbf { k } ; S\mathrm { S } is "nose" of the paraboloid z=5x2+5y2\mathrm { z } = 5 \mathrm { x } ^ { 2 } + 5 \mathrm { y } ^ { 2 } cut by the plane z=4\mathrm { z } = 4 ; direction is outward

(Multiple Choice)
4.9/5
(38)
Showing 21 - 40 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)