Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the line integral along the curve C. - C(x2+y2z2)ds,C\int _ { C } \left( \frac { x ^ { 2 } + y ^ { 2 } } { z ^ { 2 } } \right) d s , C is the curve r(t)=(6t)ij+(6t)k,0t1r ( t ) = ( 6 - t ) i - j + ( 6 - t ) k , 0 \leq t \leq 1

(Multiple Choice)
4.9/5
(43)

Solve the problem. -The shape and density of a thin shell are indicated below. Find the moment of inertia about the zz -axis. Shell: upper hemisphere of x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 cut by the plane z=0z = 0 Density: δ=4\delta = 4

(Multiple Choice)
4.8/5
(38)

Find the limit. - r(t)=(32t)i+tj;0t32r ( t ) = ( 3 - 2 t ) \mathbf { i } + t j ; 0 \leq t \leq \frac { 3 } { 2 }

(Multiple Choice)
4.9/5
(32)

Find the gradient field of the function. - f(x,y,z)=x2+y2+z2x5f ( x , y , z ) = \frac { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } { x ^ { 5 } }

(Multiple Choice)
4.9/5
(37)

Evaluate. The differential is exact. - (1,1,1)(2,2,2)3z8x4y2dx2z8x3y3dy+8z7x3y2d\int _ { ( 1,1,1 ) } ^ { ( 2,2,2 ) } - \frac { 3 z ^ { 8 } } { x ^ { 4 } y ^ { 2 } } d x - \frac { 2 z ^ { 8 } } { x ^ { 3 } y ^ { 3 } } d y + \frac { 8 z ^ { 7 } } { x ^ { 3 } y ^ { 2 } } d

(Multiple Choice)
4.8/5
(40)

Calculate the area of the surface S. - SS is the lower portion of the sphere x2+y2+z2=49x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 cut by the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } .

(Multiple Choice)
4.8/5
(39)

Solve the problem. -The radial flow field of an incompressible fluid is shown below. For which of the closed paths is the circulation not necessarily zero?Solve the problem. -The radial flow field of an incompressible fluid is shown below. For which of the closed paths is the circulation not necessarily zero?

(Multiple Choice)
4.8/5
(43)

Solve the problem. -Imagine a force field in which the force is always perpendicular to dr. What is special about the work done in moving a particle in such a field?

(Short Answer)
4.8/5
(42)

Calculate the flux of the field F across the closed plane curve C. - F=xi+yj;\mathbf { F } = x \mathbf { i } + y \mathbf { j } ; the curve CC is the counterclockwise path around the circle x2+y2=16x ^ { 2 } + y ^ { 2 } = 16

(Multiple Choice)
4.9/5
(40)

Find the equation for the plane tangent to the parametrized surface S at the point P. - S is the paraboloid r(θ,r)=rcosθi+rsinθj+5r2k;P is the point corresponding to (θ,r)=(π4,1)\mathrm { S } \text { is the paraboloid } r ( \theta , r ) = r \cos \theta i + r \sin \theta j + 5 r ^ { 2 } \mathbf { k } ; \mathrm { P } \text { is the point corresponding to } ( \theta , r ) = \left( \frac { \pi } { 4 } , 1 \right) \text {. }

(Essay)
4.9/5
(42)

Test the vector field F to determine if it is conservative. - F=csc2xcscyicotxcotycscyjcosxk\mathbf { F } = - \csc ^ { 2 } x \csc y \mathbf { i } - \cot x \cot y \csc y \mathbf { j } - \cos x \mathbf { k }

(Multiple Choice)
4.8/5
(43)

Find the flux of the vector field F across the surface S in the indicated direction. - F(x,y,z)=xzi+yzj+k,S\mathbf { F } ( x , y , z ) = x z i + y z j + k , S is the cap cut from the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 by the plane z=3z = 3 , direction is outward

(Multiple Choice)
4.8/5
(36)

Parametrize the surface S. - S is the cap cut from the paraboloid z=1129x29y2 by the cone z=x2+y2S \text { is the cap cut from the paraboloid } z = \frac { 1 } { 12 } - 9 x ^ { 2 } - 9 y ^ { 2 } \text { by the cone } z = \sqrt { x ^ { 2 } + y ^ { 2 } } \text {. }

(Essay)
4.9/5
(32)

Find the work done by F over the curve in the direction of increasing t. - F=3yi+zj+(4x+3z)k;C:r(t)=ti+t2j+t,0t2\mathbf { F } = 3 \mathrm { y } \mathbf { i } + \sqrt { \mathrm { z } } \mathbf { j } + ( 4 \mathrm { x } + 3 \mathrm { z } ) \mathbf { k } ; \mathrm { C } : \mathbf { r } ( \mathrm { t } ) = \mathrm { t } \mathbf { i } + \mathrm { t } ^ { 2 } \mathbf { j } + \mathrm { t } , 0 \leq \mathrm { t } \leq 2

(Multiple Choice)
4.8/5
(32)

Find the surface area of the surface S. - SS is the intersection of the plane 3x+4y+12z=73 x + 4 y + 12 z = 7 and the cylinder with sides y=4x2y = 4 x ^ { 2 } and y=84x2y = 8 - 4 x ^ { 2 } .

(Multiple Choice)
4.7/5
(44)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=(xexcosy)i+(x+exsiny)j;C\mathbf { F } = \left( x - e ^ { \mathrm { x } } \cos y \right) \mathbf { i } + \left( x + \mathrm { e } ^ { \mathrm { x } } \sin \mathrm { y } \right) \mathbf { j } ; \mathrm { C } is the lobe of the lemniscate r2=sin2θ\mathrm { r } ^ { 2 } = \sin 2 \theta that lies in the first quadrant.

(Multiple Choice)
4.7/5
(38)

 Find the required quantity given the wire that lies along the curve r and has density δ.\text { Find the required quantity given the wire that lies along the curve } r \text { and has density } \delta . -Moment of inertia IxI _ { x } about the xx -axis, where r(t)=1032t3/2i+(5tcost)j+(5tsint)k,0t1\mathbf { r } ( t ) = \frac { 10 } { 3 } \sqrt { 2 } t 3 / 2 \mathbf { i } + ( 5 t \cos t ) j + ( 5 t \sin t ) \mathbf { k } , 0 \leq t \leq 1 ; δ(x,y,z)=9y2+z2\delta ( x , y , z ) = \frac { 9 } { y ^ { 2 } + z ^ { 2 } }

(Multiple Choice)
4.9/5
(37)

Solve the problem. -In thermodynamics, the differential form of the internal energy of a system is dU=TdSPdV\mathrm { dU } = \mathrm { T } \mathrm { dS } - \mathrm { P } \mathrm { dV } , where U\mathrm { U } is the internal energy, T\mathrm { T } is the temperature, S\mathrm { S } is the entropy, P\mathrm { P } is the pressure, and V\mathrm { V } is the volume of the system. The First Law of Thermodynamics asserts that dU is an exact differential. Using this information, justify the thermodynamic relation TV=PS\frac { \partial \mathrm { T } } { \partial \mathrm { V } } = - \frac { \partial \mathrm { P } } { \partial \mathrm { S } } .

(Essay)
4.7/5
(41)

Evaluate the surface integral of G over the surface S. - S is the cylinder y2+z2=36,z0 and 4x6;G(x,y,z)=zS \text { is the cylinder } y ^ { 2 } + z ^ { 2 } = 36 , z \geq 0 \text { and } 4 \leq x \leq 6 ; G ( x , y , z ) = z

(Multiple Choice)
4.9/5
(33)

 Find the mass of the wire that lies along the curve r and has density δ\text { Find the mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - r(t)=(132t27)i+6tj,0t1;δ=3tr ( t ) = \left( \frac { \sqrt { 13 } } { 2 } t ^ { 2 } - 7 \right) i + 6 t j , 0 \leq t \leq 1 ; \delta = 3 t

(Multiple Choice)
4.9/5
(33)
Showing 81 - 100 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)