Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Apply Green's Theorem to evaluate the integral. - C(6ydx+8ydy)\oint _ { C } ( 6 y d x + 8 y d y ) CC : The boundary of 0xπ,0ysinx0 \leq x \leq \pi , 0 \leq y \leq \sin x

(Multiple Choice)
4.9/5
(31)

Find the flux of the curl of field F through the shell S. - F=5zi3×j2yk;S:r(r,θ)=rcosθi+rsinθj+6rk,0r6\mathbf { F } = - 5 \mathrm { zi } - 3 \times \mathbf { j } - 2 \mathrm { yk } ; \mathrm { S } : \mathrm { r } ( \mathrm { r } , \theta ) = \mathrm { r } \cos \theta \mathbf { i } + \mathrm { r } \sin \theta \mathbf { j } + 6 \mathrm { rk } , 0 \leq \mathrm { r } \leq 6 and 0θ2π0 \leq \theta \leq 2 \pi

(Multiple Choice)
4.9/5
(30)

Evaluate the work done between point 1 and point 2 for the conservative field F. - F=5xi+5yj+5zk;P1(2,2,3),P2(6,7,9)\mathrm { F } = 5 x \mathbf { i } + 5 y \mathbf { j } + 5 \mathrm { z } \mathbf { k } ; \mathrm { P } _ { 1 } ( 2,2,3 ) , \mathrm { P } _ { 2 } ( 6,7,9 )

(Multiple Choice)
4.7/5
(33)

Using Green's Theorem, find the outward flux of F across the closed curve C. - F=(9x+7y)i+(9x3y)j;C\mathbf { F } = ( - 9 x + 7 y ) \mathbf { i } + ( 9 x - 3 y ) \mathbf { j } ; C is the region bounded above by y=3x2+7y = - 3 x ^ { 2 } + 7 and below by y=4x2y = 4 x ^ { 2 } in the first quadrant

(Multiple Choice)
4.8/5
(35)

Find the surface area of the surface S. - SS is the cap cut from the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 by the cone z=6x2+y2z = 6 \sqrt { x ^ { 2 } + y ^ { 2 } } .

(Multiple Choice)
4.7/5
(30)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=(x+2y)i+(9x6y)j;C\mathrm { F } = ( \mathrm { x } + 2 \mathrm { y } ) \mathbf { i } + ( 9 \mathrm { x } - 6 \mathrm { y } ) \mathbf { j } ; \mathrm { C } is the region bounded above by y=5x2+28\mathrm { y } = - 5 \mathrm { x } ^ { 2 } + 28 and below by y=2x2\mathrm { y } = 2 \mathrm { x } ^ { 2 } in the first quadrant

(Multiple Choice)
4.9/5
(43)

Find the surface area of the surface S. - S\mathrm { S } is the portion of the surface 107x+10y220lny30z=010 \sqrt { 7 } x + 10 y ^ { 2 } - 20 \ln y - 30 z = 0 that lies above the rectangle 0x10 \leq x \leq 1 and 1y71 \leq y \leq 7 in the xyx - y plane.

(Multiple Choice)
4.7/5
(40)

Parametrize the surface S. - S is the portion of the cone x216+y216=z264 that lies between z=3 and z=6S \text { is the portion of the cone } \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 16 } = \frac { z ^ { 2 } } { 64 } \text { that lies between } z = 3 \text { and } z = 6 \text {. }

(Essay)
4.8/5
(43)

Evaluate. The differential is exact. - (0,0,0)(π,π,π)2sinxcosxdxsinycoszdycosysinzdz\int _ { ( 0,0,0 ) } ^ { ( \pi , \pi , \pi ) } - 2 \sin x \cos x d x - \sin y \cos z d y - \cos y \sin z d z

(Multiple Choice)
4.9/5
(30)

Solve the problem. -Find a parametrization for the ellipsoid x236+y281+z24=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 81 } + \frac { z ^ { 2 } } { 4 } = 1 . (Recall that the parametrization of an ellipse x236+\frac { x ^ { 2 } } { 36 } + y281=1\frac { y ^ { 2 } } { 81 } = 1 is x=6cosθ,y=9sinθ,0θ<2π)\left. x = 6 \cos \theta , y = 9 \sin \theta , 0 \leq \theta < 2 \pi \right)

(Essay)
4.9/5
(39)

Find the gradient field of the function. -f(x, y, z) = z sin (x + y + z)

(Multiple Choice)
4.9/5
(31)

Parametrize the surface S. - S is the portion of the sphere x2+y2+z2=16 between z=22 and z=22S \text { is the portion of the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 \text { between } z = - 2 \sqrt { 2 } \text { and } z = 2 \sqrt { 2 } \text {. }

(Essay)
4.9/5
(43)

Find the divergence of the field F. - F=yjzk(y2+z2)1/2\mathbf { F } = \frac { y \mathbf { j } - \mathrm { zk } } { \left( \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } \right) ^ { 1 / 2 } }

(Multiple Choice)
4.7/5
(40)

 Find the center of mass of the wire that lies along the curve r and has density δ\text { Find the center of mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - r(t)=8ti+7tj+3t2k,0t1;δ(x,y,z)=x113+12zr ( t ) = 8 t i + 7 t j + 3 t ^ { 2 } k , 0 \leq t \leq 1 ; \delta ( x , y , z ) = \frac { x } { \sqrt { 113 + 12 z } }

(Multiple Choice)
4.9/5
(27)

Using Green's Theorem, find the outward flux of F across the closed curve C. -F = xyi + xj; C is the triangle with vertices at (0, 0), (5, 0), and (0, 3)

(Multiple Choice)
4.9/5
(37)

Find the limit. - r(t)=sintjcostk;0tπ2r ( t ) = \sin t j - \cos t k ; 0 \leq t \leq \frac { \pi } { 2 }

(Multiple Choice)
4.7/5
(44)

Find the surface area of the surface S. - S\mathrm { S } is the paraboloid x2+y2z=0\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } - \mathrm { z } = 0 below the plane z=2\mathrm { z } = 2 .

(Multiple Choice)
4.7/5
(35)

Solve the problem. -Assume the curl of a vector field FF is zero. Can one automatically conclude that the circulation CFdr=0\int _ { C } \mathbf { F } \cdot \mathrm { d } \mathbf { r } = 0 for all closed paths C? Explain or justify your answer.

(Essay)
4.9/5
(37)

 Find the mass of the wire that lies along the curve r and has density δ\text { Find the mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - r(t)=(3cost)i+(3sint)j+3tk,0t2π;δ=5r ( t ) = ( 3 \cos t ) \mathbf { i } + ( 3 \sin t ) \mathbf { j } + 3 t k , 0 \leq t \leq 2 \pi ; \delta = 5

(Multiple Choice)
4.8/5
(36)

Find the work done by F over the curve in the direction of increasing t. - F=1x+5i+j+6k;C:r(t)=t7i+t6j+tk,0t1\mathbf { F } = \frac { 1 } { x + 5 } \mathbf { i } + \mathbf { j } + 6 \mathbf { k } ; \mathrm { C } : \mathbf { r } ( \mathrm { t } ) = \mathrm { t } ^ { 7 } \mathbf { i } + \mathrm { t } ^ { 6 } \mathbf { j } + \mathrm { t } \mathbf { k } , 0 \leq \mathrm { t } \leq 1

(Multiple Choice)
4.7/5
(33)
Showing 141 - 160 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)