Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. - F=18(x2+y2)4i;CF = - \frac { 1 } { 8 \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 4 } } \mathrm { i } ; \mathrm { C } is the region defined by the polar coordinate inequalities 1r31 \leq \mathrm { r } \leq 3 and 0θπ0 \leq \theta \leq \pi

(Multiple Choice)
4.9/5
(43)

Evaluate the line integral of f(x,y) along the curve C. - f(x,y)=2y2,C:y=ex,0x4f ( x , y ) = 2 y ^ { 2 } , C : y = e ^ { - x } , 0 \leq x \leq 4

(Multiple Choice)
4.9/5
(31)

 Find the required quantity given the wire that lies along the curve r and has density δ.\text { Find the required quantity given the wire that lies along the curve } r \text { and has density } \delta . -Moment of inertia IZ\mathrm { I } _ { \mathrm { Z } } about the z\mathrm { z } -axis, where r(t)=(4sin3t)i+(4cos3t)j+e2tk,0t1;δ(x,y,z)=z2r ( t ) = ( 4 \sin 3 t ) i + ( 4 \cos 3 t ) j + e ^ { 2 t } k , 0 \leq t \leq 1 ; \delta ( x , y , z ) = z ^ { 2 }

(Multiple Choice)
4.9/5
(31)

Find the work done by F over the curve in the direction of increasing t. - F=yzi+xzj+xyk;C:r(t)=t7i+t5j+t2k,0t1\mathbf { F } = \frac { \mathrm { y } } { \mathrm { z } } \mathbf { i } + \frac { \mathrm { x } } { \mathrm { z } } \mathbf { j } + \frac { \mathrm { x } } { \mathrm { y } } \mathbf { k } ; \mathrm { C } : \mathbf { r } ( \mathrm { t } ) = \mathrm { t } ^ { 7 } \mathbf { i } + \mathrm { t } ^ { 5 } \mathbf { j } + \mathrm { t } ^ { 2 } \mathbf { k } , 0 \leq \mathrm { t } \leq 1

(Multiple Choice)
4.9/5
(29)

Calculate the circulation of the field F around the closed curve C. - F=xyi+3j\mathbf { F } = \mathrm { xy } \mathbf { i } + 3 \mathbf { j } , curve C\mathrm { C } is r(t)=4costi+4sintj,0t2π\mathbf { r } ( \mathrm { t } ) = 4 \cos \mathrm { ti } + 4 \sin \mathrm { tj } , 0 \leq \mathrm { t } \leq 2 \pi

(Multiple Choice)
4.9/5
(30)

Find the surface area of the surface S. - SS is the portion of the paraboloid z=81x2y2z = 81 - x ^ { 2 } - y ^ { 2 } that lies above the ring 16x2+y23616 \leq x ^ { 2 } + y ^ { 2 } \leq 36 in the xyx y -plane.

(Multiple Choice)
4.7/5
(33)

Find the divergence of the field F. - F=yjxk(y2+x2)1/2\mathbf { F } = \frac { y \mathbf { j } - \mathrm { xk } } { \left( \mathrm { y } ^ { 2 } + \mathrm { x } ^ { 2 } \right) ^ { 1 / 2 } }

(Multiple Choice)
4.7/5
(39)

Find the limit. - r(t)=2costi+sintk;0tπ\mathbf { r } ( \mathrm { t } ) = 2 \cos \mathrm { ti } + \sin \mathrm { tk } ; 0 \leq t \leq \pi

(Multiple Choice)
4.9/5
(34)

Solve the problem. -Find a field G=P(x,y)i+Q(x,y)jG = P ( x , y ) i + Q ( x , y ) j in the xyx y -plane with the property that at any point (a,b)z(0,0),G( a , b ) z ( 0,0 ) , G is a vector of magnitude a2+b2\sqrt { \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } } tangent to the circle x2+y2=a2+b2\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } = \mathrm { a } ^ { 2 } + \mathrm { b } ^ { 2 } and pointing in the clockwise direction.

(Multiple Choice)
4.8/5
(36)

Calculate the area of the surface S. - SS is the portion of the paraboloid z=3x2+3y2z = 3 x ^ { 2 } + 3 y ^ { 2 } that lies between z=4z = 4 and z=5z = 5 .

(Multiple Choice)
4.9/5
(36)

Find the flux of the vector field F across the surface S in the indicated direction. - F=7xi+7yj+zk\mathbf { F } = 7 x \mathbf { i } + 7 y \mathbf { j } + \mathrm { z } \mathbf { k } ; S\mathrm { S } is portion of the plane x+y+z=4x + y + z = 4 for which 0x30 \leq x \leq 3 and 0y40 \leq y \leq 4 ; direction is outward (away from origin)

(Multiple Choice)
4.8/5
(40)

Find the flux of the vector field F across the surface S in the indicated direction. -F(x, y, z) = xyi + yzj + xzk , S is the surface of the rectangular prism formed from the coordinate planes and the planes x = 1, y = 4, and z = 4, direction is outward

(Multiple Choice)
4.9/5
(38)

Evaluate the surface integral of the function g over the surface S. - G(x,y,z)=y36y2+1;SG ( x , y , z ) = \frac { y } { \sqrt { 36 y ^ { 2 } + 1 } } ; S is the surface of the parabolic cylinder 30y2+10z=8030 y ^ { 2 } + 10 z = 80 bounded by the planes x=0,x=x = 0 , x = 1 , y=0y = 0 , and z=0z = 0

(Multiple Choice)
4.9/5
(39)

Solve the problem. -Consider a small region inside an elastic material such as gelatin. As the material "jiggles", this small region oscillates about its equilibrium position (x0,y0,z0)\left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) . The force that tends to restore the small region to its equilibrium position can be approximated as F=k(xx0)ik(yy0)jk(zz0)kF = - k \left( x - x _ { 0 } \right) i - k \left( y - y _ { 0 } \right) \mathbf { j } - k ( z - z 0 ) \mathbf { k } Find a potential function ff for this force field.

(Essay)
4.8/5
(41)

Find the flux of the curl of field F through the shell S. - F=7zi+6xj+4yk;S\mathbf { F } = - 7 \mathrm { zi } + 6 x \mathbf { j } + 4 y \mathbf { k } ; S is the portion of the cone z=6x2+y2z = 6 \sqrt { x ^ { 2 } + y ^ { 2 } } below the plane z=2z = 2

(Multiple Choice)
4.7/5
(43)

Calculate the area of the surface S. - SS is the portion of the cone x29+y29=z225\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 9 } = \frac { z ^ { 2 } } { 25 } that lies between z=4z = 4 and z=5z = 5 .

(Multiple Choice)
4.8/5
(46)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=xyi+y2j2yzk\mathbf { F } = x y \mathbf { i } + \mathrm { y } ^ { 2 } \mathbf { j } - 2 y z \mathbf { k } ; D\mathrm { D } : the solid wedge cut from the first quadrant by the plane y+z=2\mathrm { y } + \mathrm { z } = 2 and the parabolic cylinder x=116y2x = 1 - 16 y ^ { 2 }

(Multiple Choice)
4.9/5
(34)

Find the flux of the vector field F across the surface S in the indicated direction. -F(x, y, z) = -6i + 2j + 3k , S is the rectangular surface z = 0, 0 x 3, and 0 y 5, direction k

(Multiple Choice)
4.9/5
(32)

Solve the problem. -The shape and density of a thin shell are indicated below. Find the coordinates of the center of mass. Shell: cylinder x2+z2=64x ^ { 2 } + z ^ { 2 } = 64 bounded by y=0y = 0 and y=6y = 6 Density: constant

(Multiple Choice)
4.8/5
(45)

Calculate the circulation of the field F around the closed curve C. - F=x2y3i+x2y3j;\mathbf { F } = x ^ { 2 } y ^ { 3 } \mathbf { i } + x ^ { 2 } y ^ { 3 } \mathbf { j } ; curve CC is the counterclockwise path around the rectangle with vertices at (0,0),(4,0),(4,2)( 0,0 ) , ( 4,0 ) , ( 4,2 ) , and (0,2)( 0,2 )

(Multiple Choice)
4.9/5
(34)
Showing 241 - 260 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)