Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Assuming CC is a simple closed path, what is special about the integral C(6x+8e9xcos9y))dx+(3x+8e9xsin9y))dy?\left. \left. \int _ { C } \left( 6 x + 8 e ^ { 9 x } \cos 9 y \right) \right) d x + \left( 3 x + 8 e ^ { 9 x } \sin 9 y \right) \right) d y ? Give reasons for your answer.

(Short Answer)
4.9/5
(38)

 Find the center of mass of the wire that lies along the curve r and has density δ\text { Find the center of mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - r(t)=(3+3t)i+j3tk,0t1;δ(x,y,z)=x+z2r ( t ) = ( 3 + 3 t ) i + j - 3 t k , 0 \leq t \leq 1 ; \delta ( x , y , z ) = x + z ^ { 2 }

(Multiple Choice)
4.8/5
(39)

Find the surface area of the surface S. - S\mathrm { S } is the surface 72x2+7z=0\frac { 7 } { 2 } \mathrm { x } ^ { 2 } + 7 \mathrm { z } = 0 that lies above the region bounded by the xx -axis, x=15x = \sqrt { 15 } , and y=xy = x .

(Multiple Choice)
4.7/5
(38)

Solve the problem. -Imagine a force field in which the force is always parallel to dr. What is special about the work done in moving a particle in such a field?

(Short Answer)
4.9/5
(34)

Calculate the flux of the field F across the closed plane curve C. - F=x2i+y2j\mathbf { F } = x ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } ; the curve CC is the closed counterclockwise path around the triangle with vertices at (0,0)( 0,0 ) , (3,0)( 3,0 ) , and (0,1)( 0,1 )

(Multiple Choice)
4.9/5
(36)

Calculate the area of the surface S. - SS is the portion of the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 that lies between z=3z = 3 and z=4z = 4 .

(Multiple Choice)
4.8/5
(35)

Evaluate the line integral of f(x,y) along the curve C. - f(x,y)=x2+y2,C:y=4x3,0x3f ( x , y ) = x ^ { 2 } + y ^ { 2 } , C : y = - 4 x - 3,0 \leq x \leq 3

(Multiple Choice)
4.8/5
(44)

Find the gradient field of the function. - f(x,y,z)=xz+xy+yzxyzf ( x , y , z ) = \frac { x z + x y + y z } { x y z }

(Multiple Choice)
4.8/5
(35)

Find the flux of the vector field F across the surface S in the indicated direction. - F(x,y,z)=zk,S\mathbf { F } ( x , y , z ) = z k , S is the surface of the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 in the first octant, direction away from the origin

(Multiple Choice)
4.9/5
(48)

Find the gradient field of the function. - f(x,y,z)=ln((x+y)3z10)+z9f ( x , y , z ) = \ln \left( \frac { ( x + y ) ^ { 3 } } { z ^ { 10 } } \right) + z ^ { 9 }

(Multiple Choice)
4.7/5
(28)

Find the potential function f for the field F. - F=sec2xsin2yi+2tanxsinycosyj+8z7k\mathbf { F } = \sec ^ { 2 } x \sin ^ { 2 } y \mathbf { i } + 2 \tan x \sin y \cos y \mathbf { j } + 8 z ^ { 7 } \mathbf { k }

(Multiple Choice)
4.9/5
(41)

 Find the mass of the wire that lies along the curve r and has density δ\text { Find the mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - r(t)=4i+(34t)j+3tk,0t2π;δ=4(1+sin10t)r ( t ) = 4 i + ( 3 - 4 t ) j + 3 t k , 0 \leq t \leq 2 \pi ; \delta = 4 ( 1 + \sin 10 t )

(Multiple Choice)
4.8/5
(41)

Calculate the flux of the field F across the closed plane curve C. - F=yixj; the curve C is the circle (x+6)2+(y+9)2=144\mathbf { F } = y \mathbf { i } - \mathrm { xj } ; \text { the curve } \mathrm { C } \text { is the circle } ( x + 6 ) ^ { 2 } + ( \mathrm { y } + 9 ) ^ { 2 } = 144

(Multiple Choice)
4.8/5
(28)

Find the flux of the curl of field F through the shell S. - F=x2yi3xy2j+lnzk;S:r(r,θ)=rcosθi+rsinθj+2rk,0r2\mathbf { F } = \mathrm { x } ^ { 2 } \mathrm { yi } - 3 x \mathrm { y } ^ { 2 } \mathbf { j } + \ln \mathrm { zk } ; \mathrm { S } : \mathrm { r } ( \mathrm { r } , \theta ) = \mathrm { r } \cos \theta \mathbf { i } + \mathrm { r } \sin \theta \mathbf { j } + 2 \mathrm { rk } , 0 \leq \mathrm { r } \leq 2 and 0θ2π0 \leq \theta \leq 2 \pi

(Multiple Choice)
4.8/5
(44)

Find the potential function f for the field F. - F=2xex2+y2i+2yex2+y2jF = 2 x e ^ { x ^ { 2 } + y ^ { 2 } } i + 2 y e ^ { x ^ { 2 } + y ^ { 2 } } j

(Multiple Choice)
4.9/5
(37)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=12xz5i+2yj+2z6k;\mathbf { F } = - 12 \mathrm { xz }^ 5 \mathrm { i } + 2 \mathrm { yj } + 2 \mathrm { z } ^ { 6 } \mathbf { k } ; D: the solid wedge cut from the first quadrant by the plane z=4y\mathrm { z } = 4 \mathrm { y } and the elliptic cylinder x2+25y2=49x ^ { 2 } + 25 y ^ { 2 } = 49

(Multiple Choice)
4.8/5
(28)

Find the limit. - r(t)=tj;2t2r ( t ) = t j ; - 2 \leq t \leq 2

(Multiple Choice)
4.8/5
(35)

Using Green's Theorem, find the outward flux of F across the closed curve C. - F=ln(x2+y2)i+tan1(xy);C is the region defined by the polar coordinate inequalities 3r6 and 0θπ\mathbf { F } = \ln \left( x ^ { 2 } + y ^ { 2 } \right) i + \tan ^ { - 1 } \left( \frac { x } { y } \right) ; \quad C \text { is the region defined by the polar coordinate inequalities } 3 \leq r \leq 6 \text { and } 0 \leq \theta \leq \pi

(Multiple Choice)
4.9/5
(24)

Find the flux of the curl of field F through the shell S. - F=5yi+2xj+cos(z)k;S:r(r,θ)=2sinφcosθi+2sinφsinθj+2cosφk,0θ2π\mathbf { F } = 5 \mathrm { y } \mathbf { i } + 2 \mathrm { x } \mathbf { j } + \cos ( \mathrm { z } ) \mathbf { k } ; \mathrm { S } : \mathbf { r } ( \mathrm { r } , \theta ) = 2 \sin \varphi \cos \theta \mathbf { i } + 2 \sin \varphi \sin \theta \mathbf { j } + 2 \cos \varphi \mathbf { k } , 0 \leq \theta \leq 2 \pi and 0φπ20 \leq \varphi \leq \frac { \pi } { 2 }

(Multiple Choice)
4.8/5
(29)

Evaluate the line integral of f(x,y) along the curve C. - f(x,y)=x,C:y=x2,0x352f ( x , y ) = x , C : y = x ^ { 2 } , 0 \leq x \leq \frac { \sqrt { 35 } } { 2 }

(Multiple Choice)
4.8/5
(33)
Showing 221 - 240 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)