Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the work done by F over the curve in the direction of increasing t. - F=6xi6x5y4j+(3z7y2)k\mathbf { F } = 6 x \mathbf { i } - 6 \mathrm { x } ^ { 5 } \mathrm { y } ^ { 4 } \mathbf { j } + \left( - 3 \mathrm { z } - 7 \mathrm { y } ^ { 2 } \right) \mathbf { k } ; the path is C1C2C3\mathrm { C } _ { 1 } \cup \mathrm { C } _ { 2 } \cup \mathrm { C } _ { 3 } where C1\mathrm { C } _ { 1 } is the straight line from (0,0,0)( 0,0,0 ) to (1,0,0),C2( 1,0,0 ) , \mathrm { C } _ { 2 } is the straight line from (1,0,0)( 1,0,0 ) to (1,1,0)( 1,1,0 ) , and C3C _ { 3 } is the straight line from (1,1,0)( 1,1,0 ) to (1,1,1)( 1,1,1 )

(Multiple Choice)
4.7/5
(46)

Find the gradient field of the function. - f(x,y,z)=(x+yy+z)6f ( x , y , z ) = \left( \frac { x + y } { y + z } \right) ^ { 6 }

(Multiple Choice)
4.9/5
(42)

Solve the problem. -The shape and density of a thin shell are indicated below. Find the moment of inertia about the z-axis. Shell: portion of the cone x2+y2z2=0x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 0 between z=1z = 1 and z=2z = 2 Density: δ=1\delta = 1

(Multiple Choice)
4.8/5
(30)

Evaluate the line integral along the curve C. - C(4z)1/3ds,C\int _ { C } \left( \frac { 4 } { z } \right) ^ { 1 / 3 } \mathrm { ds } , \mathrm { C } is the curve r(t)=(4t3cost)i+(4t3sint)j+4t3k,0t32\mathbf { r } ( \mathrm { t } ) = \left( 4 \mathrm { t } ^ { 3 } \cos \mathrm { t } \right) \mathbf { i } + \left( 4 \mathrm { t } ^ { 3 } \sin \mathrm { t } \right) \mathbf { j } + 4 \mathrm { t } ^ { 3 } \mathbf { k } , 0 \leq \mathrm { t } \leq 3 \sqrt { 2 }

(Multiple Choice)
5.0/5
(31)

Evaluate the surface integral of G over the surface S. - SS is the dome z=710x210y2,z0;G(x,y,z)=1400(x2+y2)+1z = 7 - 10 x ^ { 2 } - 10 y ^ { 2 } , z \geq 0 ; G ( x , y , z ) = \frac { 1 } { \sqrt { 400 \left( x ^ { 2 } + y ^ { 2 } \right) + 1 } }

(Multiple Choice)
4.7/5
(41)

Evaluate the line integral of f(x,y) along the curve C. - f(x,y)=cosx+siny,C:y=x,0xπ2f ( x , y ) = \cos x + \sin y , C : y = x , 0 \leq x \leq \frac { \pi } { 2 }

(Multiple Choice)
4.8/5
(36)

Test the vector field F to determine if it is conservative. - F=7x7y5i+(5x7y4+z4y2)j4z3yk\mathrm { F } = 7 \mathrm { x } ^ { 7 } \mathrm { y } ^ { 5 } \mathrm { i } + \left( 5 \mathrm { x } ^ { 7 } \mathrm { y } ^ { 4 } + \frac { \mathrm { z } ^ { 4 } } { \mathrm { y } ^ { 2 } } \right) \mathrm { j } - \frac { 4 \mathrm { z } ^ { 3 } } { \mathrm { y } } \mathbf { k }

(Multiple Choice)
4.8/5
(41)

Solve the problem. -For some inexact differential forms df, a function g(x,y,z)g ( x , y , z ) can be found such that dh =g(x,y,z)df= g ( x , y , z ) d f is exact. When it exists, the function g(x,y,z)g ( x , y , z ) is called an "integrating factor". Show that g(x,y,z)=yzxg ( x , y , z ) = \frac { y z } { x } is an integrating factor for the inexact differential df=1xdx+1ydy+1zdz\mathrm { df } = - \frac { 1 } { \mathrm { x } } \mathrm { dx } + \frac { 1 } { \mathrm { y } } \mathrm { dy } + \frac { 1 } { \mathrm { z } } \mathrm { dz } .

(Essay)
4.9/5
(37)

Solve the problem. -Show that the value of the integral does not depend on the path taken from A to B. ABz2dx+3ydy+2xzdz\int _ { A } ^ { B } z ^ { 2 } d x + 3 y d y + 2 x z d z

(Essay)
4.9/5
(39)

Find the limit. - r(t)=3i2jtk;1t1r ( t ) = 3 i - 2 j - t k ; - 1 \leq t \leq 1

(Multiple Choice)
4.9/5
(37)

Find the flux of the vector field F across the surface S in the indicated direction. - F(x,y,z)=7xi+7yj+2k,S\mathbf { F } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = 7 \mathrm { x } \mathbf { i } + 7 \mathrm { yj } + 2 \mathbf { k } , \mathrm { S } is the surface cut from the bottom of the paraboloid z=x2+y2\mathrm { z } = \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } by the plane z=2z = 2 , direction is outward

(Multiple Choice)
5.0/5
(39)

Solve the problem. -The shape and density of a thin shell are indicated below. Find the coordinates of the center of mass. Shell: portion of the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 that lies in the first octant Density: constant

(Multiple Choice)
4.7/5
(31)

Evaluate the line integral along the curve C. - Cx+y+z5ds,C\int _ { C } \frac { x + y + z } { 5 } d s , C is the curve r(t)=4ti+(6cos12t)j+(6sin12t)k,0t2πr ( t ) = 4 t i + \left( 6 \cos \frac { 1 } { 2 } t \right) j + \left( 6 \sin \frac { 1 } { 2 } t \right) k , 0 \leq t \leq 2 \pi

(Multiple Choice)
4.8/5
(35)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Sketch the vector field in the plane along with its horizontal and vertical components at a representative assortment of points on the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 . - F=yx2+y2i+xx2+y2jF = \frac { y } { \sqrt { x ^ { 2 } + y ^ { 2 } } } \mathrm { i } + \frac { x } { \sqrt { x ^ { 2 } + y ^ { 2 } } } j

(Short Answer)
4.7/5
(34)

Use Stokes' Theorem to calculate the circulation of the field F around the curve C in the indicated direction. - F=9y3i+9x3j+8z3k\mathbf { F } = - 9 \mathrm { y } ^ { 3 } \mathbf { i } + 9 \mathrm { x } ^ { 3 } \mathbf { j } + 8 \mathrm { z } ^ { 3 } \mathbf { k } ; C: the portion of the paraboloid x2+y2=z\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } = \mathrm { z } cut by the cylinder x2+y2=4\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } = 4

(Multiple Choice)
4.8/5
(40)

Using Green's Theorem, calculate the area of the indicated region. -The area bounded above by y=2x2y = 2 x ^ { 2 } and below by y=3x3y = 3 x ^ { 3 }

(Multiple Choice)
4.9/5
(30)

Evaluate. The differential is exact. - (0,0,0)(1,1,1)8xe4x2+9y2+6z2dx+18ye4x2+9y2+6z2dy+12ze4x2+9y2+6z2dz\int _ { ( 0,0,0 ) } ^ { ( 1,1,1 ) } 8 x e ^ { 4 x ^ { 2 } + 9 y ^ { 2 } + 6 z ^ { 2 } } d x + 18 y e ^ { 4 x ^ { 2 } + 9 y ^ { 2 } + 6 z ^ { 2 } } d y + 12 z e ^ { 4 x ^ { 2 } + 9 y ^ { 2 } + 6 z ^ { 2 } } d z

(Multiple Choice)
4.8/5
(41)
Showing 261 - 277 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)