Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=x2i+y2j+zk; D: the solid cube cut by the coordinate planes and the planes x=3,y=3, and z=3\mathbf { F } = x ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + z \mathbf { k } \text {; D: the solid cube cut by the coordinate planes and the planes } x = 3 , y = 3 \text {, and } z = 3

(Multiple Choice)
4.9/5
(33)

Calculate the circulation of the field F around the closed curve C. - F=710x2yi+710xy2j;\mathbf { F } = \frac { 7 } { 10 } \mathrm { x } ^ { 2 } \mathrm { yi } + \frac { 7 } { 10 } \mathrm { xy } ^ { 2 } \mathrm { j } ; curve C\mathrm { C } is r(t)=3costi+3sintj,0t2π\mathbf { r } ( \mathrm { t } ) = 3 \cos \mathrm { ti } + 3 \sin \mathrm { tj } , 0 \leq \mathrm { t } \leq 2 \pi

(Multiple Choice)
4.7/5
(28)

Find the divergence of the field F. -F =8x6i8xyj3xzk= 8 x ^ { 6 } \mathbf { i } - 8 x y j - 3 x z k

(Multiple Choice)
4.9/5
(32)

Find the flux of the vector field F across the surface S in the indicated direction. - F=2x2jz3k;S\mathbf { F } = 2 \mathrm { x } ^ { 2 } \mathrm { j } - \mathrm { z } ^ { 3 } \mathrm { k } ; \mathrm { S } is the portion of the parabolic cylinder y=2x2\mathrm { y } = 2 \mathrm { x } ^ { 2 } for which 0z10 \leq \mathrm { z } \leq 1 and 1x1- 1 \leq \mathrm { x } \leq 1 ; direction is outward (away from the yzy - z plane)

(Multiple Choice)
4.9/5
(30)

Solve the problem. -Assuming all the necessary derivatives exist, show that if Cfydxfxdy=0\int _ { C } \frac { \partial f } { \partial y } d x - \frac { \partial f } { \partial x } d y = 0 for all closed curves C to which Green's Theorem applies, then ff satisfies the Laplace equation 2fx2+2fy2=0\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } = 0 for all regions bounded by closed curves C\mathrm { C } to which Green's Theorem applies.

(Essay)
4.9/5
(49)

Apply Green's Theorem to evaluate the integral. - C(8y+x)dx+(y+3x)dy\oint _ { C } ( 8 y + x ) d x + ( y + 3 x ) d y CC : The circle (x6)2+(y3)2=9( x - 6 ) ^ { 2 } + ( y - 3 ) ^ { 2 } = 9

(Multiple Choice)
4.8/5
(40)

Parametrize the surface S. - S is the portion of the cylinder x2+y2=25 that lies between z=7 and z=8S \text { is the portion of the cylinder } x ^ { 2 } + y ^ { 2 } = 25 \text { that lies between } z = 7 \text { and } z = 8 \text {. }

(Essay)
4.8/5
(40)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Sketch the vector field in the plane along with its horizontal and vertical components at a representative assortment of points on the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 . - F=yx2+y2ixx2+y2j\mathbf { F } = \frac { \mathrm { y } } { \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } } \mathbf { i } - \frac { \mathrm { x } } { \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } } \mathrm { j }

(Short Answer)
4.7/5
(35)

Find the gradient field of the function. - f(x,y,z)=ex6+y5+z7f ( x , y , z ) = e ^ { x ^ { 6 } + y ^ { 5 } + z ^ { 7 } }

(Multiple Choice)
4.9/5
(43)

Solve the problem. -The shape and density of a thin shell are indicated below. Find the coordinates of the center of mass. Shell: "nose" of the paraboloid x2+y2=2zx ^ { 2 } + y ^ { 2 } = 2 z cut by the plane z=3z = 3 Density: δ=x2+y2+1\delta = \sqrt { x ^ { 2 } + y ^ { 2 } + 1 }

(Multiple Choice)
4.9/5
(32)

Calculate the area of the surface S. - SS is the portion of the sphere x2+y2+z2=100x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 100 between z=52z = - 5 \sqrt { 2 } and z=52z = 5 \sqrt { 2 } .

(Multiple Choice)
4.9/5
(45)

Solve the problem. -a). For the field F(x,y)=Mi+NjF ( x , y ) = M i + N j and the closed counterclockwise plane curve CC in the xyplanex y - p l a n e , show that CFnds=CMdyNdx.\int _ { C } F \cdot n d s = \int _ { C } M d y - N d x . b). How would the equality change if the closed path is followed clockwise?

(Short Answer)
4.8/5
(30)

Evaluate the surface integral of the function g over the surface S. - G(x,y,z)=x2+y2+z2;SG ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } ; S is the surface of the cube formed from the coordinate planes and the planes x=1x = 1 , y=1y = 1 , and z=1z = 1

(Multiple Choice)
4.8/5
(38)

Evaluate the line integral along the curve C. - ds,C is the path given by: :(t)=(2t)+(2t) from (2,0,0) to (0,2,0) :(t)=(2t)+(2t) from (0,2,0) to (0,0,2) :(t)=(2t)+(2t) from (0,0,2) to (2,0,0)

(Multiple Choice)
4.8/5
(34)

Evaluate the surface integral of G over the surface S. - S\mathrm { S } is the portion of the cone z=3x2+y2,0z3;G(x,y,z)=zy\mathrm { z } = 3 \sqrt { \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } } , 0 \leq \mathrm { z } \leq 3 ; \mathrm { G } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = \mathrm { z } - \mathrm { y }

(Multiple Choice)
4.8/5
(33)

 Find the center of mass of the wire that lies along the curve r and has density δ\text { Find the center of mass of the wire that lies along the curve } r \text { and has density } \delta \text {. } - r(t)=(5cos3t)i+(5sin3t)j+15tk,0t2π;δ(x,y,z)=3(1+sin3tcos3t)r ( t ) = ( 5 \cos 3 t ) i + ( 5 \sin 3 t ) j + 15 t k , 0 \leq t \leq 2 \pi ; \delta ( x , y , z ) = 3 ( 1 + \sin 3 t \cos 3 t )

(Multiple Choice)
4.8/5
(41)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=eyzi+6yj+8z2k;\mathbf { F } = \mathrm { e } ^ { \mathrm { yz } } \mathrm { i } + 6 \mathrm { yj } + 8 \mathrm { z } ^ { 2 } \mathbf { k } ; D: the solid sphere x2+y2+z264\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } \leq 64

(Multiple Choice)
4.8/5
(45)

Using the Divergence Theorem, find the outward flux of F across the boundary of the region D. - F=2x3i+2y3j+2z3k\mathbf { F } = 2 \mathrm { x } ^ { 3 } \mathbf { i } + 2 \mathrm { y } ^ { 3 } \mathrm { j } + 2 \mathrm { z } ^ { 3 } \mathbf { k } ; D: the thick sphere 16x2+y2+z22516 \leq \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } \leq 25

(Multiple Choice)
4.9/5
(41)

Using Green's Theorem, calculate the area of the indicated region. -The astroid r(t)=(5cos3t)i+(5sin3t)j,0t2π\mathbf { r } ( \mathrm { t } ) = \left( 5 \cos ^ { 3 } \mathrm { t } \right) \mathbf { i } + \left( 5 \sin ^ { 3 } \mathrm { t } \right) \mathbf { j } , 0 \leq \mathrm { t } \leq 2 \pi

(Multiple Choice)
4.8/5
(36)

Test the vector field F to determine if it is conservative. - F=4x3y4z4i+4x4y3z4j+4x4y4z3k\mathbf { F } = 4 x ^ { 3 } y ^ { 4 } z ^ { 4 } i + 4 x ^ { 4 } y ^ { 3 } z ^ { 4 } j + 4 x ^ { 4 } y ^ { 4 } z ^ { 3 } k

(Multiple Choice)
4.9/5
(39)
Showing 121 - 140 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)