Exam 17: Integrals and Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use Stokes' Theorem to calculate the circulation of the field F around the curve C in the indicated direction. - F=3xi+2xj+7zk;C\mathbf { F } = 3 x \mathbf { i } + 2 x \mathbf { j } + 7 \mathrm { zk } ; \mathrm { C } : the cap cut from the upper hemisphere x2+y2+z2=16(z0)\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } = 16 ( \mathrm { z } \geq 0 ) by the cylinder x2+y2=4\mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } = 4

(Multiple Choice)
4.8/5
(41)

Evaluate the work done between point 1 and point 2 for the conservative field F. - F=16xe8x29y22z2i18ye8x29y22z2j4ze8x29y22z2k;P1(0,0,0),P2(1,1,1)\mathbf { F } = 16 x e ^ { 8 x ^ { 2 } - 9 y ^ { 2 } - 2 z ^ { 2 } } \mathbf { i } - 18 y e ^ { 8 x ^ { 2 } - 9 y ^ { 2 } - 2 z ^ { 2 } } \mathbf { j } - 4 z e ^ { 8 x ^ { 2 } - 9 y ^ { 2 } - 2 z ^ { 2 } } \mathbf { k } ; P _ { 1 } ( 0,0,0 ) , P _ { 2 } ( 1,1,1 )

(Multiple Choice)
4.7/5
(41)

Evaluate. The differential is exact. - (0,0,0)(1,1,1)(8x10x9y5)dx5x10y4dy45z4dz\int _ { ( 0,0,0 ) } ^ { ( 1,1,1 ) } \left( 8 x - 10 x ^ { 9 } y ^ { 5 } \right) d x - 5 x ^ { 10 } y ^ { 4 } d y - 45 z ^ { 4 } d z

(Multiple Choice)
4.8/5
(39)

Solve the problem. -The shape and density of a thin shell are indicated below. Find the moment of inertia about the zz -axis. Shell: "nose" of the paraboloid x2+y2=2zx ^ { 2 } + y ^ { 2 } = 2 z cut by the plane z=2z = 2 Density: δ=1x2+y2+1\delta = \frac { 1 } { \sqrt { x ^ { 2 } + y ^ { 2 } + 1 } }

(Multiple Choice)
4.8/5
(41)

Find the surface area of the surface S. - SS is the paraboloid x2+y2z=0x ^ { 2 } + y ^ { 2 } - z = 0 between the planes z=0z = 0 and z=6z = 6 .

(Multiple Choice)
4.8/5
(37)

Find the equation for the plane tangent to the parametrized surface S at the point P. - S is the cylinder r(θ,z)=6cos2θi+3sin2θj+zk;P is the point corresponding to (θ,z)=(π4,1)S \text { is the cylinder } r ( \theta , z ) = 6 \cos ^ { 2 } \theta \mathbf { i } + 3 \sin 2 \theta \mathbf { j } + \mathrm { zk } ; \mathrm { P } \text { is the point corresponding to } ( \theta , z ) = \left( \frac { \pi } { 4 } , - 1 \right)

(Short Answer)
4.9/5
(46)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Sketch the vector field in the plane along with its horizontal and vertical components at a representative assortment of points on the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 . -F = xi - yj

(Not Answered)
This question doesn't have any answer yet
Ask our community

Evaluate the surface integral of G over the surface S. - SS is the hemisphere x2+y2+z2=3,z0;G(x,y,z)=z2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 3 , z \geq 0 ; G ( x , y , z ) = z ^ { 2 }

(Multiple Choice)
4.7/5
(37)

Find the equation for the plane tangent to the parametrized surface S at the point P. -  S is the cylinder r(θ,z)=8cosθi+8sinθj+zk;P is the point corresponding to (θ,z)=(π2,3)\text { S is the cylinder } r ( \theta , z ) = 8 \cos \theta \mathbf { i } + 8 \sin \theta \mathbf { j } + \mathrm { zk } ; \mathrm { P } \text { is the point corresponding to } ( \theta , \mathrm { z } ) = \left( \frac { \pi } { 2 } , 3 \right) \text {. }

(Short Answer)
4.9/5
(44)

Use Stokes' Theorem to calculate the circulation of the field F around the curve C in the indicated direction. - F=x2i+xyj+yk;C\mathbf { F } = x ^ { 2 } \mathbf { i } + x y \mathbf { j } + y \mathbf { k } ; \mathrm { C } : the counterclockwise path around the perimeter of the rectangle in the xyx - y plane formed from the xx -axis, yy -axis, x=2x = 2 and y=3y = 3

(Multiple Choice)
4.8/5
(28)

Find the gradient field of the function. - f(x,y,z)=ln(x4+y5+z6)f ( x , y , z ) = \ln \left( x ^ { 4 } + y ^ { 5 } + z ^ { 6 } \right)

(Multiple Choice)
4.9/5
(37)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. -F = (x - y)i + (x + y)j; C is the triangle with vertices at (0, 0), (4, 0), and (0, 9)

(Multiple Choice)
4.9/5
(25)

Use Stokes' Theorem to calculate the circulation of the field F around the curve C in the indicated direction. - F=3yi+5xj+6z3k;C: the portion of the plane 8x+5y+8z=10 in the first quadrant \mathbf { F } = - 3 \mathrm { y } \mathbf { i } + 5 \mathrm { x } \mathbf { j } + 6 \mathrm { z } ^ { 3 } \mathbf { k } ; \mathrm { C } : \text { the portion of the plane } 8 x + 5 y + 8 z = 10 \text { in the first quadrant }

(Multiple Choice)
4.8/5
(29)

Calculate the flow in the field F along the path C. - F=e2i+1yj+2k,C\mathbf { F } = \mathrm { e } ^ { 2 } \mathrm { i } + \frac { 1 } { \mathrm { y } } \mathrm { j } + 2 \mathbf { k } , \mathrm { C } is the curve r(t)=4t2i+5tj+(82t)k,1t3\mathbf { r } ( \mathrm { t } ) = 4 \mathrm { t } ^ { 2 } \mathrm { i } + 5 \mathrm { tj } + ( - 8 - 2 \mathrm { t } ) \mathbf { k } , 1 \leq \mathrm { t } \leq 3

(Multiple Choice)
4.8/5
(27)

Test the vector field F to determine if it is conservative. - F=x4y4z4i+x4y4z4j+z4k\mathbf { F } = x ^ { 4 } y ^ { 4 } z ^ { 4 } i + x ^ { 4 } y ^ { 4 } z ^ { 4 } j + z ^ { 4 } k

(Multiple Choice)
4.8/5
(34)

Find the flux of the vector field F across the surface S in the indicated direction. - F=xi+yj+z3k\mathbf { F } = x \mathbf { i } + y \mathbf { j } + z ^ { 3 } \mathbf { k } ; S is portion of the cone z=3x2+y2z = 3 \sqrt { x ^ { 2 } + y ^ { 2 } } between z=3z = 3 and z=6z = 6 ; direction is outward

(Multiple Choice)
4.8/5
(38)

Find the work done by F over the curve in the direction of increasing t. - F=xyi+3j+8xk;C:r(t)=cos7ti+sin7tj+tk,0tπ14\mathbf { F } = x y \mathbf { i } + 3 \mathbf { j } + 8 x \mathbf { k } ; \mathrm { C } : \mathbf { r } ( \mathrm { t } ) = \cos 7 \mathrm { ti } + \sin 7 \mathrm { tj } + \mathrm { t } \mathbf { k } , 0 \leq \mathrm { t } \leq \frac { \pi } { 14 }

(Multiple Choice)
4.8/5
(38)

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. -F = xyi + xj; C is the triangle with vertices at (0, 0), (9, 0), and (0, 10)

(Multiple Choice)
4.8/5
(41)

Test the vector field F to determine if it is conservative. - F=(zex+y1x)i+zex+yj+ex+yykF = \left( z e ^ { x + y } - \frac { 1 } { x } \right) i + z e ^ { x + y } j + e ^ { x + y } y _ { k }

(Multiple Choice)
4.9/5
(47)

Calculate the flow in the field F along the path C. - F=y2i+zj+xk;C is the curve r(t)=(3+3t)i+2tj2tk,0t1\mathbf { F } = \mathrm { y } ^ { 2 } \mathbf { i } + \mathrm { zj } + \mathrm { xk } ; C \text { is the curve } \mathbf { r } ( \mathrm { t } ) = ( 3 + 3 \mathrm { t } ) \mathbf { i } + 2 \mathrm { tj } - 2 \mathrm { tk } , 0 \leq \mathrm { t } \leq 1

(Multiple Choice)
5.0/5
(39)
Showing 61 - 80 of 277
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)