Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the surface integral SxzdS\iint _ { S } x z d S , where S is the triangle with vertices (1,0,0),(0.1.0)( 1,0,0 ) , ( 0.1 .0 ) , and (0,0,1)( 0,0,1 )

(Short Answer)
4.7/5
(46)

Evaluate cFdr\int _ { c } \mathbf { F } d \mathbf { r } where F(x,y)=(yx2+y2,xx2+y2)\mathbf { F } ( x , y ) = \left( \frac { - y } { x ^ { 2 } + y ^ { 2 } } , \frac { x } { x ^ { 2 } + y ^ { 2 } } \right) and the curve CC is given by C:x=5sint,y=5cost,0t2πC : x = 5 \sin t , y = 5 \cos t , 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.9/5
(43)

Find a function of f(x,y)f ( x , y ) such that f=F(x,y)=xy2+2,x2y+2\nabla f = \mathrm { F } ( x , y ) = \left\langle x y ^ { 2 } + 2 , x ^ { 2 } y + 2 \right\rangle .

(Essay)
4.8/5
(41)

Find the work done by the force field F(x,y)=yx2+y2i+xx2+y2j\mathbf { F } ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j } on a particle that moves along the quarter-circle CC given in the figure below.  Find the work done by the force field  \mathbf { F } ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }  on a particle that moves along the quarter-circle  C  given in the figure below.

(Short Answer)
4.9/5
(35)

Find the value of the Laplacian 2fof f(x,y)=xy3\nabla ^ { 2 } f \text {of } f ( x , y ) = x y ^ { 3 } at the point (1,1)( 1,1 )

(Multiple Choice)
4.9/5
(36)

Use the Divergence Theorem to evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=x(y+1)i+2yzj(z2+yz)k\mathbf { F } ( x , y , z ) = x ( y + 1 ) \mathbf { i } + 2 y z \mathbf { j } - \left( z ^ { 2 } + y z \right) \mathbf { k } and S is the sphere x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 .

(Multiple Choice)
4.7/5
(30)

Evaluate C(14y412x3cosy3)dx+(xy3+x2+38x4y2siny3)dy\oint _ { C } \left( \frac { 1 } { 4 } y ^ { 4 } - \frac { 1 } { 2 } x ^ { 3 } \cos y ^ { 3 } \right) d x + \left( x y ^ { 3 } + x ^ { 2 } + \frac { 3 } { 8 } x ^ { 4 } y ^ { 2 } \sin y ^ { 3 } \right) d y , if C is the path shown below.  Evaluate  \oint _ { C } \left( \frac { 1 } { 4 } y ^ { 4 } - \frac { 1 } { 2 } x ^ { 3 } \cos y ^ { 3 } \right) d x + \left( x y ^ { 3 } + x ^ { 2 } + \frac { 3 } { 8 } x ^ { 4 } y ^ { 2 } \sin y ^ { 3 } \right) d y  , if C is the path shown below.

(Short Answer)
4.8/5
(42)

Evaluate the line integral cxdx\int _ { c } x d x , where CC is the curve x=t,y=t,0t1x = t , \quad y = t , \quad 0 \leq t \leq 1 .

(Multiple Choice)
4.9/5
(32)

Use Green's Theorem to evaluate the line integral along the given positively oriented curve: CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F(x,y)=x3yi+x4j\mathbf { F } ( x , y ) = x ^ { 3 } y \mathbf { i } + x ^ { 4 } \mathbf { j } and C is the curve x4+y4=1x ^ { 4 } + y ^ { 4 } = 1 .

(Short Answer)
4.8/5
(39)

Let S be the parametric surface x=rcosθ,y=rsinθ,z=θ,0r1,0θπ2x = r \cos \theta , y = r \sin \theta , z = \theta , 0 \leq r \leq 1,0 \leq \theta \leq \frac { \pi } { 2 } . Use Stokes' Theorem to evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } , where F(x,y,z)=yi+xj+zk\mathbf { F } ( x , y , z ) = - y \mathbf { i } + x \mathbf { j } + z \mathbf { k } .

(Short Answer)
4.8/5
(44)

Find a function f such that F=f\mathbf { F } = \nabla f and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the curve C. F(x,y,z)=4xexi+cosyj+2x2ezk;C:r(t)=ti+t2j+t4k,0t1\mathbf { F } ( x , y , z ) = 4 x e ^ { x } \mathbf { i } + \cos y \mathbf { j } + 2 x ^ { 2 } \mathrm { e } ^ { z } \mathbf { k } ; C : \mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + t ^ { 4 } \mathbf { k } , \quad 0 \leq t \leq 1

(Essay)
4.8/5
(33)

Determine whether or not F(x,y)=(yexy+4x3y)i+(xexy+x4)j\mathbf { F } ( x , y ) = \left( y e ^ { x y } + 4 x ^ { 3 } y \right) \mathbf { i } + \left( x e ^ { x y } + x ^ { 4 } \right) \mathbf { j } is a conservative vector field. If it is, find a function f such that F=f\mathbf { F } = \nabla f .

(Essay)
4.7/5
(40)

Find the value of the Laplacian 2f of f(x,y,z)=z(x2+y3)\nabla ^ { 2 } f \text { of } f ( x , y , z ) = z \left( x ^ { 2 } + y ^ { 3 } \right) at the point (1,2,3)( 1,2,3 )

(Multiple Choice)
4.8/5
(30)

Let F(x,y,z)=xj\mathbf { F } ( x , y , z ) = x \mathbf { j } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the rectangular path from (0,0,0)( 0,0,0 ) to (1,0,1)( 1,0,1 ) to (1,1,1)( 1,1,1 ) to (0,1,0)( 0,1,0 ) to (0,0,0)( 0,0,0 ) .

(Multiple Choice)
4.8/5
(39)

Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=xi+yj+xk\mathbf { F } = x \mathbf { i } + y \mathbf { j } + x \mathbf { k } and S is the part of the plane z=1xyz = 1 - x - y in the first octant with downward orientation.

(Multiple Choice)
4.9/5
(42)

Use Green's Theorem to evaluate the line integral along the given positively oriented curve: C(y2tan1x)dx+(3x+siny)dy\int _ { C } \left( y ^ { 2 } - \tan ^ { - 1 } x \right) d x + ( 3 x + \sin y ) d y , where C is the boundary of the region enclosed by the parabola y=x2y = x ^ { 2 } and the line y=4y = 4 .

(Short Answer)
5.0/5
(31)

Find the work done by the force field F(x,y)=xy2i+yj\mathbf { F } ( x , y ) = x y ^ { 2 } \mathbf { i } + y \mathbf { j } on a particle that moves along the curve y=x2y = x ^ { 2 } from (0,0)( 0,0 ) to (1.1)( 1.1 ) .

(Multiple Choice)
4.8/5
(36)

Evaluate Sx2+zx2+y2dS\iint _ { S } \frac { x ^ { 2 } + z } { x ^ { 2 } + y ^ { 2 } } d S , where S is the part of the surface z=xyz = x y that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 .

(Short Answer)
4.8/5
(35)

Use Stokes' Theorem to evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=y2zi+xzj+x2y2k\mathbf { F } ( x , y , z ) = y ^ { 2 } z \mathbf { i } + x z \mathbf { j } + x ^ { 2 } y ^ { 2 } \mathbf { k } and S is the part of the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } that lies inside the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 , oriented upward.

(Short Answer)
4.8/5
(37)

Find a function of f(x,y)f ( x , y ) such that f=2xyi+x2j\nabla f = 2 x y \mathbf { i } + x ^ { 2 } \mathbf { j } .

(Multiple Choice)
4.8/5
(40)
Showing 141 - 160 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)