Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the line integral cx2zds\int _ { c } x ^ { 2 } z d s where C is the curve x=sin2t,y=3t,z=cos2t,0tπ4x = \sin 2 t , y = 3 t , z = \cos 2 t , 0 \leq t \leq \frac { \pi } { 4 } .

(Short Answer)
4.8/5
(36)

Find a function of f(x,y)f ( x , y ) such that f=F(x,y)=(x(x2+y2)3/2,y(x2+y2)3/2)\nabla f = \mathbf { F } ( x , y ) = \left( \frac { x } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } } , \frac { y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } } \right) ..

(Essay)
4.7/5
(38)

Use Green's Theorem to find the area of the region interior to the ellipse x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1 .

(Short Answer)
4.9/5
(40)

Evaluate cFdr\int _ { c } \mathbf { F } d \mathbf { r } where F(x,y,z)=y+2xz,x,x2\mathbf { F } ( x , y , z ) = \left\langle y + 2 x z , x , x ^ { 2 } \right\rangle and CC is any curve from (1,0,2)( 1,0,2 ) to (2,3,0)( 2,3,0 ) .

(Multiple Choice)
4.8/5
(37)

Let F(x,y,z)=zi+xj+yk(x2+y2+z2)3/2\mathbf { F } ( x , y , z ) = \frac { z \mathbf { i } + x \mathbf { j } + y \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } and let S be the boundary surface of the solid E={(x,y,z)1x2+y2+z24}E = \left\{ ( x , y , z ) \mid 1 \leq x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 4 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Short Answer)
4.8/5
(32)

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F (x,y,z)=yzi+xzj+xyk( x , y , z ) = y z \mathbf { i } + x z \mathbf { j } + x y \mathbf { k } , and the curve CC is given by the vector function r(t)=t2i+tj+t3k,0t1\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } + t \mathbf { j } + t ^ { 3 } \mathbf { k } , 0 \leq t \leq 1 .

(Multiple Choice)
4.8/5
(34)

Find the gradient vector field of the function f(x,y)=arctan(yx)f ( x , y ) = \arctan \left( \frac { y } { x } \right) .

(Multiple Choice)
4.8/5
(40)

Evaluate the flux integral S(2xiyj+3zk)ndS\iint _ { S } ( 2 x \mathbf { i } - y \mathbf { j } + 3 z \mathbf { k } ) \cdot \mathbf { n } d S over the boundary of the ball x2+y2+z29x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 9 .

(Short Answer)
4.8/5
(27)

Find the work done by the force field F(x,y)=yx2+y2i+xx2+y2j\mathbf { F } ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j } on a particle that moves along the circle C: x=1+cost,y=1+sint,0t2πx = 1 + \cos t , y = 1 + \sin t , 0 \leq t \leq 2 \pi .

(Short Answer)
4.7/5
(38)

Evaluate the line integral Cyds\int _ { C } y d s , where CC is the curve x=cos3t,y=sin3t,0tπ2x = \cos ^ { 3 } t , y = \sin ^ { 3 } t , 0 \leq t \leq \frac { \pi } { 2 } .

(Short Answer)
4.9/5
(37)

Evaluate C[3x2y2+2cos(2x+y)]dx+[2x3y+cos(2x+y)]dy\int _ { C } \left[ 3 x ^ { 2 } y ^ { 2 } + 2 \cos ( 2 x + y ) \right] d x + \left[ 2 x ^ { 3 } y + \cos ( 2 x + y ) \right] d y if C is the closed path starting at (0,0)( 0,0 ) and moving clockwise around the square with vertices (0,0)( 0,0 ) , (1,0)( 1,0 ) , (1,1)( 1,1 ) , and (0,1)( 0,1 ) .

(Short Answer)
4.8/5
(36)

Evaluate the surface integral SxyzdS\iint _ { S } x y z d S , where S is the part of the sphere x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 that lies above the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } .

(Short Answer)
4.8/5
(39)

Determine whether F(x,y,z)=(2xy+lnz,x2+zcos(yz),xz+ycos(yz))\mathbf { F } ( x , y , z ) = \left( 2 x y + \ln z , x ^ { 2 } + z \cos ( y z ) , \frac { x } { z } + y \cos ( y z ) \right) is conservative and if so, find a potential function.

(Essay)
4.8/5
(39)

Determine whether or not F(x,y)=(x2+y)i+(y2+x)j\mathbf { F } ( x , y ) = \left( x ^ { 2 } + y \right) \mathbf { i } + \left( y ^ { 2 } + x \right) \mathbf { j } is a conservative vector field. If it is, find a function f such that F=f\mathbf { F } = \nabla f

(Essay)
4.9/5
(38)

Let F(x,y,z)=k\mathbf { F } ( x , y , z ) = \mathbf { k } . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) and has upward orientation.

(Multiple Choice)
4.9/5
(35)

Find the gradient vector field of the function f(x,y,z)=xsiny+z2f ( x , y , z ) = x \sin y + z ^ { 2 } .

(Multiple Choice)
4.8/5
(39)

Evaluate the line integral C(2xy2+tan1x3)dx+(x2y+y3+1)dy\int _ { C } \left( 2 x y ^ { 2 } + \tan ^ { - 1 } x ^ { 3 } \right) d x + \left( x ^ { 2 } y + \sqrt { y ^ { 3 } + 1 } \right) d y , where C consists of the arc of the parabola y=x2y = x ^ { 2 } from (1,1)( 1,1 ) to (2,4)( 2,4 ) , followed by the line segments from (2,4)( 2,4 ) to (0,4)( 0,4 ) , from (0,4)( 0,4 ) to (0,1)( 0,1 ) and from (0,1)( 0,1 ) to (1,1)( 1,1 ) .

(Short Answer)
4.8/5
(39)

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F(x,y,z)=(y+z)ix2j4y2k\mathbf { F } ( x , y , z ) = ( y + z ) \mathbf { i } - x ^ { 2 } \mathbf { j } - 4 y ^ { 2 } \mathbf { k } , and the curve CC is given by the vector function r(t)=ti+t2j+t4k,0t1\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + t ^ { 4 } \mathbf { k } , \quad 0 \leq t \leq 1

(Short Answer)
4.9/5
(42)

Find (a) the curl and (b) the divergence of the vector field F(x,y,z)=x2yi+yz2j+zx2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { y } \mathbf { i } + y z ^ { 2 } \mathbf { j } + z x ^ { 2 } \mathbf { k } .

(Essay)
4.9/5
(35)

Let F(x,y,z)=i\mathbf { F } ( x , y , z ) = \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Multiple Choice)
4.8/5
(35)
Showing 201 - 220 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)