Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the line integral Csinxdx\int _ { C } \sin x d x where CC is the arc of the curve x=y4x = y ^ { 4 } from (1,1)( 1 , - 1 ) to (1,1)( 1,1 ) .

(Short Answer)
4.9/5
(48)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=y2i+xj+zk\mathbf { F } ( x , y , z ) = y ^ { 2 } \mathbf { i } + x \mathbf { j } + z \mathbf { k } and S is the part of the surface z=x+y2z = x + y ^ { 2 } that lies above the rectangle (0x1,0y2)( 0 \leq x \leq 1,0 \leq y \leq 2 ) and has upward orientation.

(Short Answer)
4.7/5
(31)

If r=xi+yj+zk\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and f(x,y,z)=lnrf ( x , y , z ) = \ln | \mathbf { r } | , compute f\nabla f and determine where f=0f = 0 and where f=0\nabla f = 0 . What is the domain of f ?

(Essay)
4.8/5
(40)

Let F(x,y,z)=xk\mathbf { F } ( x , y , z ) = x \mathbf { k } . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is that part of the plane z=xz = x that lies above the square with vertices (0,0),(1,0),(0,1)( 0,0 ) , ( 1,0 ) , ( 0,1 ) , and (1,1)( 1,1 ) and has upward orientation.

(Multiple Choice)
4.8/5
(35)

Let F(x,y,z)=(x+eytanz)i+3xexzj+(cosyz)k\mathbf { F } ( x , y , z ) = \left( x + e ^ { y \tan z } \right) \mathrm { i } + 3 \mathrm { xe } ^ { x z } \mathbf { j } + ( \cos y - z ) \mathbf { k } and let S be the surface with equation x4+y4+z4=1x ^ { 4 } + y ^ { 4 } + z ^ { 4 } = 1 . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Short Answer)
4.9/5
(39)

Evaluate C(12x2y26yz2)dx+(8x3y6xz2)dy12xyzdz\oint _ { C } \left( 12 x ^ { 2 } y ^ { 2 } - 6 y z ^ { 2 } \right) d x + \left( 8 x ^ { 3 } y - 6 x z ^ { 2 } \right) d y - 12 x y z d z , where the path C is the curve of intersection of the paraboloid 3z=x2+y23 z = x ^ { 2 } + y ^ { 2 } with the plane 3x=4y+z=123 x = 4 y + z = 12 .

(Short Answer)
4.8/5
(30)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is the boundary surface of the solid sphere E:x2+y2+z24E : x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 4 and F=3xi+4yj+5zk\mathbf { F } = 3 x \mathbf { i } + 4 y \mathbf { j } + 5 z \mathbf { k }

(Short Answer)
4.7/5
(39)

Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } for the vector field F(x,y,z)=yi+xj+3zk\mathbf { F } ( x , y , z ) = - y \mathbf { i } + x \mathbf { j } + 3 z \mathbf { k } , where S is the hemisphere z=16x2y2z = \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } with upward orientation.

(Short Answer)
4.9/5
(32)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F(x,y,z)=x(x2+y2+z2)3/2i+y(x2+y2+z2)3/2j+z(x2+y2+z2)3/2k\mathbf { F } ( x , y , z ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { i } + \frac { y } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { j } + \frac { z } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { k } and S is the sphere x2+y2+(z5)2=9x ^ { 2 } + y ^ { 2 } + ( z - 5 ) ^ { 2 } = 9 .

(Short Answer)
4.9/5
(34)

Determine whether F(x,y,z)=(y,z,x)\mathbf { F } ( x , y , z ) = ( y , z , x ) is conservative and if so, find a potential function.

(Short Answer)
4.9/5
(36)

Let F(x,y,z)=xi+yj+zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Multiple Choice)
4.8/5
(42)

Let f(x,y,z)=ex2+y2+z2f ( x , y , z ) = e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } , find curl (f)( \nabla f ) at the point (1,1,1)( 1,1,1 ) .

(Multiple Choice)
4.7/5
(33)

Is there a vector field G on R3\mathbb { R } ^ { 3 } such that curl G=yzi+xyzj+xyk\mathbf { G } = y z \mathbf { i } + x y z \mathbf { j } + x y \mathbf { k } ? Explain.

(Essay)
4.9/5
(42)

Evaluate the line integral C(3x2y46xy)dx+(4x3y33x2)dy\int _ { C } \left( 3 x ^ { 2 } y ^ { 4 } - 6 x y \right) d x + \left( 4 x ^ { 3 } y ^ { 3 } - 3 x ^ { 2 } \right) d y , where CC is any path from (1,2)( 1,2 ) to (2,1)( 2,1 ) .

(Multiple Choice)
4.9/5
(42)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=(x,y,z)=yjzk\mathbf { F } = ( x , y , z ) = y \mathbf { j } - z \mathbf { k } and S is the cube bounded by x=±1,y=±1,z=±1x = \pm 1 , \quad y = \pm 1 , \quad z = \pm 1 .

(Multiple Choice)
4.8/5
(36)

Evaluate the line integral Cydx\int _ { C } y d x , where CC is the curve x=t,y=t2,0t1x = t , y = t ^ { 2 } , 0 \leq t \leq 1 .

(Multiple Choice)
4.9/5
(41)

Find a function f such that F=f\mathbf { F } = \nabla f and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the curve C. F(x,y)=e2yi+(1+2xe2y)j;C:r(t)=teti+(1+t)j;0t1\mathbf { F } ( x , y ) = e ^ { 2 y } \mathbf { i } + \left( 1 + 2 x e ^ { 2 y } \right) \mathbf { j } ; C : \mathbf { r } ( t ) = t e ^ { t } \mathbf { i } + ( 1 + t ) \mathbf { j } ; 0 \leq t \leq 1

(Essay)
4.8/5
(46)

Evaluate CFdr\int _ { C } \mathbf { F } d \mathbf { r } where F(x,y)=(ex2+3yx2,cosy2+x3)\mathbf { F } ( x , y ) = \left( e ^ { x ^ { 2 } } + 3 y x ^ { 2 } , \cos y ^ { 2 } + x ^ { 3 } \right) and the curve C is given by C : x=2sint,y=2cost,0t2πx = 2 \sin t , y = 2 \cos t , 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.8/5
(36)

Evaluate cFdr\int _ { c } \mathbf { F } d \mathbf { r } where F(x,y)=(yx2+y2,xx2+y2)\mathbf { F } ( x , y ) = \left( \frac { - y } { x ^ { 2 } + y ^ { 2 } } , \frac { x } { x ^ { 2 } + y ^ { 2 } } \right) and the curve CC is given by C:x=2+sint,y=2+cost,0t2πC : x = 2 + \sin t , y = 2 + \cos t , 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.9/5
(36)

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F(x,y,z)=x2i+xyj+z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + x y \mathbf { j } + z ^ { 2 } \mathbf { k } , and the curve CC is given by the vector function r(t)=sinti+costj+t2k,0tπ2\mathbf { r } ( t ) = \sin t \mathbf { i } + \cos t \mathbf { j } + t ^ { 2 } \mathbf { k } , \quad 0 \leq t \leq \frac { \pi } { 2 } .

(Short Answer)
4.8/5
(42)
Showing 61 - 80 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)