Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the mass of a thin funnel in the shape of a cone z=x2+y2,1z4z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 4 , is its density function is ρ(x,y,z)=10z\rho ( x , y , z ) = 10 - z .

(Short Answer)
4.9/5
(31)

Evaluate c(ex+cosx+y)dx+(11+y2+yey2+x)dy\int _ { c } \left( e ^ { x } + \cos x + y \right) d x + \left( \frac { 1 } { 1 + y ^ { 2 } } + y e ^ { y ^ { 2 } } + x \right) d y if C is the path starting at (0,0)( 0,0 ) and going along the line segment from (0,0)( 0,0 ) to (1,1)( 1,1 ) , and then along the line segment from (1,1)( 1,1 ) to (2,0)( 2,0 ) .

(Essay)
4.7/5
(35)

According to Green's Theorem, the line integral Cy2dx+x2dy\int _ { C } y ^ { 2 } d x + x ^ { 2 } d y over a positively oriented, piecewise-smooth, simple closed curve C is equal to the double integral Df(x,y)dA\iint _ { D } f ( x , y ) d A over the region D bounded by C. Find the function f(x,y)f ( x , y ) .

(Multiple Choice)
4.8/5
(39)

Evaluate cxy2ds\int _ { c } x y ^ { 2 } d s where the CC is the right half of the circle x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

(Multiple Choice)
4.9/5
(44)

Verify that Stokes' Theorem is true for the vector field F(x,y,z)=yi+λj+k\mathbf { F } ( x , y , z ) = - y \mathbf { i } + \lambda \mathbf { j } + \mathbf { k } and the cone z2=x2+y2,0z1z ^ { 2 } = x ^ { 2 } + y ^ { 2 } , 0 \leq z \leq 1 , oriented upward.

(Short Answer)
4.7/5
(33)

Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the circle x=3sint,y=3cost,z=2,0t2πx = 3 \sin t , y = 3 \cos t , z = 2,0 \leq t \leq 2 \pi .

(Multiple Choice)
4.8/5
(31)

Consider the vector field F(x,y,z)=x(x2+y2+z2)3/2i+y(x2+y2+z2)3/2j+z(x2+y2+z2)3/2k\mathbf { F } ( x , y , z ) = - \frac { x } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { i } + \frac { y } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { j } + \frac { z } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { k } (a) Compute the curl of F.(b) Compute the divergence of F.

(Short Answer)
4.7/5
(42)

Evaluate the line integral C(2xy2+tan(x3))dx+(x2y+2y)dy\int _ { C } \left( 2 x y ^ { 2 } + \tan \left( x ^ { 3 } \right) \right) d x + \left( x ^ { 2 } y + 2 y \right) d y where C consists of the arc of the parabola y=x2y = x ^ { 2 } from (0,0)( 0,0 ) to (1,1)( 1,1 ) , followed by the line segments from (1,1)( 1,1 ) to (2,4)( 2,4 ) , from (2,4)( 2,4 ) to (0,4)( 0,4 ) .

(Short Answer)
4.8/5
(36)

Let F(x,y,z)=yj+xj+ez2k\mathbf { F } ( x , y , z ) = - y \mathbf { j } + x \mathbf { j } + e ^ { z ^ { 2 } } \mathbf { k } . Evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot \mathrm { d } \mathbf { S } over the surface S given by z=1x2y2z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } , with downward orientation.

(Multiple Choice)
4.8/5
(44)

For what value of the constant b is the vector field F(x,y,z)=2xi+zj+bzk\mathbf { F } ( x , y , z ) = 2 x \mathbf { i } + z \mathbf { j } + b z \mathbf { k } incompressible?

(Multiple Choice)
4.8/5
(38)

Find the flux of F(x,y,z)=(x2z+1ln(y+3))i+(xyz+1(y+3))j+(xz2+z(y+3)2)k\mathbf { F } ( x , y , z ) = \left( x ^ { 2 } z + \frac { 1 } { \ln ( y + 3 ) } \right) \mathbf { i } + \left( x y z + \frac { 1 } { ( y + 3 ) } \right) \mathbf { j } + \left( x z ^ { 2 } + \frac { z } { ( y + 3 ) ^ { 2 } } \right) \mathbf { k } across the surface of the solid x2+y2+z21x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 .

(Short Answer)
4.9/5
(32)

Find (a) the curl and (b) the divergence of the vector field F(x,y,z)=y2zix2yzk\mathbf { F } ( x , y , z ) = y ^ { 2 } z \mathbf { i } - x ^ { 2 } y z \mathbf { k } .

(Essay)
4.9/5
(32)

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F (x,y)=2xyi+x2j+k( x , y ) = 2 x y \mathbf { i } + x ^ { 2 } \mathbf { j } + \mathbf { k } , and the curve CC is given by the vector function r(t)=t2i+t3j+tk,0t1r ( t ) = t ^ { 2 } \mathbf { i } + t ^ { 3 } \mathbf { j } + t \mathbf { k } , \quad 0 \leq t \leq 1 .

(Multiple Choice)
4.9/5
(35)

Evaluate C0dx+4xdy\oint _ { C } 0 d x + 4 x d y , if C is the path shown below, starting and ending at (1,1)( 1,1 ) .  Evaluate  \oint _ { C } 0 d x + 4 x d y  , if C is the path shown below, starting and ending at  ( 1,1 )  .

(Short Answer)
4.9/5
(41)

Compute the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } if F(x,y,z)=z2k\mathbf { F } ( x , y , z ) = z ^ { 2 } \mathbf { k } and S is the piece of the sphere z2+y2+z2=1z ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 in the second octant (x0,y0,z0)( x \leq 0 , y \geq 0 , z \geq 0 ) .

(Short Answer)
4.8/5
(47)

Let S be the outwardly-oriented surface of a solid region E where the volume of E is 10ft310 \mathrm { ft } ^ { 3 } . If r=xi+yj+zk\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and r=rr = | \mathbf { r } | , evaluate the surface integral s(r2)dS\iint _ { s } \nabla \left( r ^ { 2 } \right) d \mathbf { S } .

(Short Answer)
4.8/5
(36)

Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } for the vector field F(x,y,z)=x2yi3xy2j+4y3k\mathbf { F } ( x , y , z ) = x ^ { 2 } y \mathbf { i } - 3 x y ^ { 2 } \mathbf { j } + 4 y ^ { 3 } \mathbf { k } where S is the part of the elliptic paraboloid z=x2+y29z = x ^ { 2 } + y ^ { 2 } - 9 that lies below the square 0x1,0y10 \leq x \leq 1 , \quad 0 \leq y \leq 1 and has downward orientation.

(Short Answer)
4.9/5
(35)

Let F(x,y,z)=xi+yj+zk(x2+y2+z2)3/2\mathbf { F } ( x , y , z ) = \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where C is the curve of intersection of the paraboloid x2+y2=2zx ^ { 2 } + y ^ { 2 } = 2 z and the cylinder x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x .

(Multiple Choice)
4.9/5
(38)

Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } for the vector field F(x,y,z)=xiyj+z2k\mathbf { F } ( x , y , z ) = - x \mathbf { i } - y \mathbf { j } + z ^ { 2 } \mathbf { k } where S is part of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } between the planes z = 1 and z = 2 with upward orientation.

(Short Answer)
4.9/5
(38)

A surface has the shape of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } between z=0z = 0 and z=1z = 1 with the density function ρ(x,y,z)=1z\rho ( x , y , z ) = 1 - z . Find the mass of the surface.

(Multiple Choice)
4.9/5
(34)
Showing 101 - 120 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)