Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y)=xy2i+yj\mathbf { F } ( x , y ) = x y ^ { 2 } \mathbf { i } + y \mathbf { j } and the curve CC is the straight line from (0,0)( 0,0 ) to (1,1)( 1,1 ) .

(Multiple Choice)
4.9/5
(38)

If R is the region enclosed by a simple closed positively-oriented curve C, then the area of R is given by _____. A) Cydx+xdy\int _ { C } y d x + x d y d. 12Cydxxdy\frac { 1 } { 2 } \int _ { C } y d x - x d y b. 12Cxdyydx\frac { 1 } { 2 } \int _ { C } x d y - y d x e.None of the above C) 12Cydx+xdy\frac { 1 } { 2 } \int _ { C } y d x + x d y

(Short Answer)
4.9/5
(45)

Find the work done by the force field F(x,y)=2xyi+x2j\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + x ^ { 2 } \mathbf { j } on a particle that moves along the curve r(t)=t2i+t3j,1t2\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } + t ^ { 3 } \mathbf { j } , \quad 1 \leq t \leq 2 .

(Multiple Choice)
4.9/5
(48)

Let F(x,y,z)=x2i\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Multiple Choice)
4.9/5
(38)

Evaluate Czdx+2yzdy+(x+y2)dz\int _ { C } z d x + 2 y z d y + \left( x + y ^ { 2 } \right) d z , where CC is the line segment x=2t,y=2t,z=2t1,0t1x = 2 - t , y = 2 t , z = 2 t - 1,0 \leq t \leq 1 .

(Multiple Choice)
4.8/5
(41)

Let F(x,y,z)=x2y2i+x2z2j+y2z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } y ^ { 2 } \mathbf { i } + x ^ { 2 } z ^ { 2 } \mathbf { j } + y ^ { 2 } z ^ { 2 } \mathbf { k } . Let C be the rectangular path from (1,1,2)( 1,1,2 ) to (3,1,2)( 3,1,2 ) to (3,5,2)( 3,5,2 ) to (1,5,2)( 1,5,2 ) to (1,1,2)( 1,1,2 ) . Use Stokes' Theorem to evaluate the line integral CFTd s\int _ { C } \mathbf { F } \cdot \mathbf { T } d \mathrm {~s} , where T is the unit tangent vector to C.

(Short Answer)
4.8/5
(45)

Sketch the vector field F where F(x,y,z)=j+k\mathbf { F } ( x , y , z ) = \mathbf { j } + \mathbf { k } .  Sketch the vector field F where  \mathbf { F } ( x , y , z ) = \mathbf { j } + \mathbf { k }  .

(Essay)
4.9/5
(36)

Consider the surfaces S1S _ { 1 } : 19x2+19y2+14z2s=1,z0\frac { 1 } { 9 } x ^ { 2 } + \frac { 1 } { 9 } y ^ { 2 } + \frac { 1 } { 4 } z ^ { 2 } s = 1 , z \geq 0 , and S2S _ { 2 } : 4z=9x2y2,z04 z = 9 - x ^ { 2 } - y ^ { 2 } , \quad z \geq 0 , and let F be a vector field with continuous partial derivatives everywhere. Why do we know that S1curlFdS=S2curlFdS\iint _ { S _ { 1 } } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } = \iint _ { S _ { 2 } } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } ?

(Essay)
4.8/5
(45)

Evaluate the line integral Cydx+xdy\int _ { C } y d x + x d y , where CC is the curve x=t,y=t3,1t2x = t , y = t ^ { 3 } , 1 \leq t \leq 2 .

(Multiple Choice)
4.9/5
(45)

Use Green's Theorem to evaluate the line integral along the given positively oriented curve: Cx2ydx3y2dy\int _ { C } x ^ { 2 } y d x - 3 y ^ { 2 } d y , where C is the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Short Answer)
4.7/5
(37)

According to Green's Theorem, the line integral Cydx+xdy\int _ { C } y d x + x d y over a positively oriented, piecewise-smooth, simple closed curve C is equal to the double integral Df(x,y)dA\iint _ { D } f ( x , y ) d A over the region D bounded by C. Find the function f(x,y)f ( x , y ) .

(Multiple Choice)
4.9/5
(46)

A fluid has density 1500 and velocity field v=yi+xj+2zk\mathbf { v } = - y \mathbf { i } + x \mathbf { j } + 2 z \mathbf { k } . Find the rate of flow outward through the sphere x2+y2+z2=25x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 .

(Short Answer)
4.9/5
(36)

Evaluate the line integral cxyds\int _ { c } x y d s where C is the line segment joining (1,1)( - 1,1 ) to (2,3)( 2,3 ) .

(Short Answer)
4.9/5
(43)

Find the flux of F(x,y,z)=(x+yz2)i+(xz2+y)j+(z+yx2)k\mathbf { F } ( x , y , z ) = \left( x + y z ^ { 2 } \right) \mathbf { i } + \left( x z ^ { 2 } + y \right) \mathbf { j } + \left( z + y x ^ { 2 } \right) \mathbf { k } across the surface of the solid bounded by the paraboloid y=4z2x2y = 4 - z ^ { 2 } - x ^ { 2 } and the xzx z - plane.

(Short Answer)
4.9/5
(32)

Evaluate the line integral Cxy2dxyx2dy\oint _ { C } x y ^ { 2 } d x - y x ^ { 2 } d y around the triangle with vertices (1,0)( 1,0 ) , (0,1)( 0,1 ) , and (0,0)( 0,0 ) with clockwise orientation.

(Short Answer)
4.8/5
(27)

Let F(x,y,z)=xy2i\mathbf { F } ( x , y , z ) = x y ^ { 2 } \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Multiple Choice)
4.9/5
(39)

Consider the top half of the ellipsoid x2+y2+14z2=1,z0x ^ { 2 } + y ^ { 2 } + \frac { 1 } { 4 } z ^ { 2 } = 1 , z \geq 0 parametrized by x=sinusinv,y=cosusinv,z=2cosv,0vπ2x = \sin u \sin v , y = \cos u \sin v , z = 2 \cos v , 0 \leq v \leq \frac { \pi } { 2 } . Find a normal vector N at the point determined by u=π4,v=π3u = \frac { \pi } { 4 } , v = \frac { \pi } { 3 } , and determine if it is upward and/or outward.

(Short Answer)
4.9/5
(39)

Let F(x,y,z)=(x3+yz)i+x2yj+xz2k\mathbf { F } ( x , y , z ) = \left( x ^ { 3 } + y z \right) \mathbf { i } + x ^ { 2 } y \mathbf { j } + x z ^ { 2 } \mathbf { k } and let S be the surface of the solid bounded by the spheres x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 and x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Short Answer)
4.8/5
(39)

Evaluate the line integral Cxdy\int _ { C } x d y along the triangular path consisting of the line segment from (0,0)( 0,0 ) to (2,3)( 2,3 ) followed by the line segment from (2,3)( 2,3 ) to (1,0)( 1,0 ) followed by the line segment from (1,0)( 1,0 ) to (0,0)( 0,0 ) .

(Multiple Choice)
4.9/5
(35)

Evaluate the line integral C3x2y2dx+2x3ydy\int _ { C } 3 x ^ { 2 } y ^ { 2 } d x + 2 x ^ { 3 } y d y , where CC is any path from (1,2)( 1,2 ) to (2,1)( 2,1 ) .

(Multiple Choice)
4.8/5
(39)
Showing 121 - 140 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)