Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use Stokes' Theorem to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y,z)=z2i+y2j+xyk\mathbf { F } ( x , y , z ) = z ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + x y \mathbf { k } and C is the triangle with vertices (1,0,0),(0,1,0)( 1,0,0 ) , ( 0,1,0 ) , and (0,0,2)( 0,0,2 )

(Short Answer)
4.9/5
(36)

Find the work done by the force field F(x,y)=(x2+y2)1/2\mathbf { F } ( x , y ) = \nabla \left( x ^ { 2 } + y ^ { 2 } \right) ^ { - 1 / 2 } on a particle that moves from the point (3,4)( 3,4 ) to the point (0,2)( 0,2 ) .

(Multiple Choice)
4.9/5
(38)

Find the gradient vector field of f(x,y,z)=xyzf ( x , y , z ) = x y z .

(Essay)
4.9/5
(39)

Let F(x,y,z)=(z4ysinx)i+xzj+yz2k\mathbf { F } ( x , y , z ) = ( z - 4 y \sin x ) \mathbf { i } + x z \mathbf { j } + y z ^ { 2 } \mathbf { k } . Find the value of the divergence of F at the point (0,0,1)( 0,0,1 ) .

(Multiple Choice)
4.8/5
(41)

Evaluate the surface integral SzdS\iint _ { S } z d S , where S is that part of the cylinder z=1x2z = \sqrt { 1 - x ^ { 2 } } that lies above the square with vertices (1,1),(1,1),(1,1)( - 1 , - 1 ) , ( 1 , - 1 ) , ( - 1,1 ) , and (1,1)( 1,1 ) .

(Multiple Choice)
4.7/5
(32)

An upper hemisphere is given by z=16x2y2z = \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } with the density function ρ(x,y,z)=z\rho ( x , y , z ) = z . Find the mass of the sphere.

(Multiple Choice)
4.7/5
(37)

Find the gradient vector field of the function f(x,y)=xy2f ( x , y ) = x y ^ { 2 } .

(Multiple Choice)
4.8/5
(32)

Evaluate the line integral Cxy2dx+x2ydy\int _ { C } x y ^ { 2 } d x + x ^ { 2 } y d y : (a) if CC is the curve x=cost,y=sint,0tπx = \cos t , y = \sin t , \quad 0 \leq t \leq \pi , the top half of the unit circle from (1,0)( 1,0 ) to (1,0)( - 1,0 ) .(b) if CC is the line segment from (1,0)( 1,0 ) to (1,0)( - 1,0 ) .

(Short Answer)
4.8/5
(29)

Let F(x,y,z)=(z+y2)i+2xyj+(x+y)k\mathbf { F } ( x , y , z ) = \left( z + y ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + ( x + y ) \mathbf { k } . Find the curl of F at the point (1,1,1)( 1,1,1 ) .

(Multiple Choice)
4.8/5
(38)

Find the work done by the force field F(x,y)=x(x2+y2)32i+y(x2+y2)32j\mathbf { F } ( x , y ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathbf { i } + \frac { y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathbf { j } on a particle that moves along the curve CC given in the figure below.  Find the work done by the force field  \mathbf { F } ( x , y ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathbf { i } + \frac { y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathbf { j }  on a particle that moves along the curve  C  given in the figure below.

(Short Answer)
4.9/5
(38)

Use Stokes' Theorem to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y,z)=x2zi+xy2j+x2k\mathbf { F } ( x , y , z ) = x ^ { 2 } z \mathbf { i } + x y ^ { 2 } \mathbf { j } + x ^ { 2 } \mathbf { k } and C is the curve of intersection of the plane x+y+z=1x + y + z = 1 and the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

(Short Answer)
4.8/5
(32)

Determine whether or not F(x,y)=(ycosxcosy)i+(sinx+xsiny)j\mathbf { F } ( x , y ) = ( y \cos x - \cos y ) \mathbf { i } + ( \sin x + x \sin y ) \mathbf { j } is a conservative vector field. If it is, find a function f such that F=f\mathbf { F } = \nabla f

(Essay)
4.8/5
(39)

Sketch the vector field F where F (x,y)=yixjx2+y2( x , y ) = \frac { y \mathbf { i } - x \mathbf { j } } { \sqrt { x ^ { 2 } + y ^ { 2 } } } .  Sketch the vector field F where F  ( x , y ) = \frac { y \mathbf { i } - x \mathbf { j } } { \sqrt { x ^ { 2 } + y ^ { 2 } } }  .

(Essay)
4.7/5
(37)

Evaluate the line integral Cydxxdy\int _ { C } y d x - x d y along the circle x=2cost,y=3sint,0t2πx = 2 \cos t , y = 3 \sin t , 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.7/5
(29)

Use Stokes' Theorem to evaluate C(3z2y)dx+(4x2y)dy+(z+2y)dz\int _ { C } ( 3 z - 2 y ) d x + ( 4 x - 2 y ) d y + ( z + 2 y ) d z where C is the triangle with vertices (1,0,0),(0.1.0)( 1,0,0 ) , ( 0.1 .0 ) , and (0.0.1)( 0.0 .1 ) , oriented counter clockwise as viewed from above.

(Multiple Choice)
4.7/5
(38)

Determine whether or not F(x,y)=(3x24y)i+(4y22x)j\mathbf { F } ( x , y ) = \left( 3 x ^ { 2 } - 4 y \right) \mathbf { i } + \left( 4 y ^ { 2 } - 2 x \right) \mathbf { j } is a conservative vector field. If it is, find a function f such that F=f\mathbf { F } = \nabla f .

(Short Answer)
4.8/5
(36)

Find a formula for the vector field graphed below. (There are many possible answers.) Find a formula for the vector field graphed below. (There are many possible answers.)

(Essay)
4.8/5
(45)

Find the work done by the force field F(x,y)=(x+y)i+x2j\mathbf { F } ( x , y ) = ( x + y ) \mathbf { i } + x ^ { 2 } \mathbf { j } on a particle that moves from the point (1,0)( 1,0 ) to the point (2,2)( 2,2 ) along the parabola y=x2xy = x ^ { 2 } - x .

(Multiple Choice)
4.9/5
(37)

Let F(x,y,z)=xi\mathbf { F } ( x , y , z ) = x \mathbf { i } and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Multiple Choice)
4.9/5
(43)

Determine whether or not the vector field F(x,y,z)=zi+2yzj+(x+y2)k\mathbf { F } ( x , y , z ) = z \mathbf { i } + 2 y z \mathbf { j } + \left( x + y ^ { 2 } \right) \mathbf { k } is conservative. If it is conservative, find a function f such that F=f\mathbf { F } = \nabla f .

(Essay)
4.8/5
(30)
Showing 21 - 40 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)