Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Each vector field F graphed below is shown in the xy-plane and looks the same in all other horizontal planes. Is div F at the point P positive, negative or zero? Is curl F at the point P equal to 0? Explain.(a) Each vector field F graphed below is shown in the xy-plane and looks the same in all other horizontal planes. Is div F at the point P positive, negative or zero? Is curl F at the point P equal to 0? Explain.(a)   (b)   (c)  (b) Each vector field F graphed below is shown in the xy-plane and looks the same in all other horizontal planes. Is div F at the point P positive, negative or zero? Is curl F at the point P equal to 0? Explain.(a)   (b)   (c)  (c) Each vector field F graphed below is shown in the xy-plane and looks the same in all other horizontal planes. Is div F at the point P positive, negative or zero? Is curl F at the point P equal to 0? Explain.(a)   (b)   (c)

(Essay)
4.8/5
(41)

Let F(x,y,z)=z2i+x2j+y2k\mathbf { F } ( x , y , z ) = z ^ { 2 } \mathbf { i } + x ^ { 2 } \mathbf { j } + y ^ { 2 } \mathbf { k } . Find the curl of F.

(Multiple Choice)
4.9/5
(36)

Evaluate the line integral Cyzdy+xydz\int _ { C } y z d y + x y d z , where CC is the curve x=t,y=t,z=t2,0t1x = \sqrt { t } , y = t , z = t ^ { 2 } , 0 \leq t \leq 1 .

(Short Answer)
4.8/5
(36)

Determine whether F(x,y,z)=xy,y,z\mathbf { F } ( x , y , z ) = \langle x - y , y , z \rangle is conservative and if so, find a potential function.

(Short Answer)
4.8/5
(35)

Evaluate the line integral Cyzdx+xzdy+xydz\int _ { C } y z d x + x z d y + x y d z , where CC consists of line segments from (0,0,0)( 0,0,0 ) to (2,0,0)( 2,0,0 ) , from (2,0,0)( 2,0,0 ) to (1,3,1)( 1,3 , - 1 ) , and from (1,3,1)( 1,3 , - 1 ) to (1,3,0)( 1,3,0 ) .

(Short Answer)
5.0/5
(36)

Evaluate the line integral C(y+x2)dx+(2x+siny3+ey23)dy\int _ { C } \left( y + x ^ { 2 } \right) d x + \left( 2 x + \sqrt [ 3 ] { \sin y ^ { 3 } + e ^ { y ^ { 2 } } } \right) d y , where C is the upper half of the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 from (1,0)( 1,0 ) to (1,0)( - 1,0 ) .

(Short Answer)
4.7/5
(39)

Let F(x,y,z)=(z+y2)i+2xyj+(x+y)k\mathbf { F } ( x , y , z ) = \left( z + y ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + ( x + y ) \mathbf { k } . Find the value of the divergence of F at the point (1,2,3)( 1,2,3 ) .

(Multiple Choice)
4.8/5
(33)

Evaluate the line integral 12Cxdyydx\frac { 1 } { 2 } \int _ { C } x d y - y d x where CC is the curve from (0,0)( 0,0 ) to (1,0)( 1,0 ) , to (1,2)( 1,2 ) to (0,2)( 0,2 ) , then to (0,0)( 0,0 ) .

(Short Answer)
4.9/5
(24)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F=(x,y,z)=yj+zk\mathbf { F } = ( x , y , z ) = y \mathbf { j } + z \mathbf { k } and S is the cube bounded by x=±1,y=±1,z=±1x = \pm 1 , \quad y = \pm 1 , \quad z = \pm 1 .

(Multiple Choice)
4.9/5
(33)

Sketch the vector field F where F (x,y)=xiyj( x , y ) = x \mathbf { i } - y \mathbf { j } .  Sketch the vector field F where F  ( x , y ) = x \mathbf { i } - y \mathbf { j }  .

(Essay)
4.8/5
(36)

Let F(x,y,z)=(x2+yex)i+(y2+zex)j+(z2+xey)k\mathbf { F } ( x , y , z ) = \left( x ^ { 2 } + y e ^ { x } \right) \mathbf { i } + \left( y ^ { 2 } + z e ^ { x } \right) \mathbf { j } + \left( z ^ { 2 } + x e ^ { y } \right) \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y21,0zx+2}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } 1,0 \leq z \leq x + 2 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Short Answer)
4.7/5
(35)

Let F(x,y,z)=xyi\mathbf { F } ( x , y , z ) = x y i and let S be the boundary surface of the solid E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Multiple Choice)
4.9/5
(29)

Find the value of the gradient vector field of the function f(x,y)=exy2f ( x , y ) = e ^ { xy ^ { 2 } } at the point (1,1)( 1,1 ) .

(Multiple Choice)
4.7/5
(38)

Evaluate the line integral Cxdy\int _ { C } x d y along the circle x=cost,y=sint,0t2πx = \cos t , y = \sin t , 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.8/5
(29)

Let F(x,y,z)=xi+yj+2zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + 2 z \mathbf { k } and let S be the boundary surface of the solid E={(x,y,z)x2+y2z4}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } \leq z \leq 4 \right\} . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .

(Short Answer)
4.8/5
(38)

What value of the constant a makes the vector field F(x,y,z)=2xzi+ay2zj+(x2+y3)k\mathbf { F } ( x , y , z ) = 2 x z \mathbf { i } + a y ^ { 2 } z \mathbf { j } + \left( x ^ { 2 } + y ^ { 3 } \right) \mathbf { k } conservative?

(Multiple Choice)
4.7/5
(34)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F(x,y,z)=x2i+xyj+zk\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + x y \mathbf { j } + z \mathbf { k } and S is the part of the surface z=x2+y2z = x ^ { 2 } + y ^ { 2 } below the plane z=1z = 1 , with upward orientation.

(Short Answer)
4.7/5
(35)

Find the mass and center of mass of a thin wire in the shape of a quarter-circle x2+y2=r2x ^ { 2 } + y ^ { 2 } = r ^ { 2 } , x0,y0x \geq 0 , y \geq 0 , if the density function is ρ(x,y)=x+y\rho ( x , y ) = x + y .

(Essay)
4.8/5
(37)

Evaluate the flux of the vector field F=2i+j+3k\mathbf { F } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } through the plane region with the given orientation as shown below.  Evaluate the flux of the vector field  \mathbf { F } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }  through the plane region with the given orientation as shown below.

(Short Answer)
4.8/5
(44)

Find the flux of F(x,y,z)=(yz2)i+(x+y3)j+(z3)k\mathbf { F } ( x , y , z ) = \left( y z ^ { 2 } \right) \mathbf { i } + \left( \mathrm { x } + y ^ { 3 } \right) \mathbf { j } + \left( z ^ { 3 } \right) \mathbf { k } across the surface of the solid bounded by the paraboloid x=4z2y2x = 4 - z ^ { 2 } - y ^ { 2 } and the yzy z - plane.

(Short Answer)
4.9/5
(43)
Showing 41 - 60 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)