Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the work done by the force field F(x,y)=yx2+y2i+xx2+y2j\mathbf { F } ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j } on a particle that moves along the circle C: x=cost,y=sint,0t2πx = \cos t , y = \sin t , 0 \leq t \leq 2 \pi .

(Short Answer)
4.7/5
(38)

Let F(x,y,z)=2xy3z4i+3x2y2z4j+4x2y3z3k\mathbf { F } ( x , y , z ) = 2 x y ^ { 3 } z ^ { 4 } \mathbf { i } + 3 x ^ { 2 } y ^ { 2 } z ^ { 4 } \mathbf { j } + 4 x ^ { 2 } y ^ { 3 } z ^ { 3 } \mathbf { k } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the elliptical path r(t)=costi+sintj+costk,0t2π\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k } , \quad 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.7/5
(31)

Let F(x,y,z)=y2i+xj\mathbf { F } ( x , y , z ) = y ^ { 2 } \mathbf { i } + x \mathbf { j } . Find the value of the curl of F at the point (1,1,3).

(Multiple Choice)
4.9/5
(35)

Determine whether F(x,y,z)=zxy,zyx,ln(xy)\mathbf { F } ( x , y , z ) = \left\langle \frac { z } { x - y } , \frac { z } { y - x } , \ln ( x - y ) \right\rangle is conservative and if so, find a potential function.

(Essay)
4.7/5
(39)

For what value of the constant bb is the vector field F=bxy2i+x2yj\mathbf { F } = b x y ^ { 2 } \mathbf { i } + x ^ { 2 } y \mathbf { j } conservative?

(Multiple Choice)
4.8/5
(42)

Find a formula for the vector field graphed below. (There are many possible answers.) Find a formula for the vector field graphed below. (There are many possible answers.)

(Essay)
4.8/5
(39)

Evaluate the line integral Cxydx+yzdy+zxdx\int _ { C } x y d x + y z d y + z x d x : (a) if CC is the line segment from (1,1,1)( 1,1,1 ) to (3,3,3)( 3,3,3 ) .(b) if CC is the line segment from (3,3,3)( 3,3,3 ) to (1,1,1)( 1,1,1 ) .

(Short Answer)
4.9/5
(36)

Use the Divergence Theorem to evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=x(y1)i+2yzj(z2+yz)k\mathbf { F } ( x , y , z ) = x ( y - 1 ) \mathbf { i } + 2 y z \mathbf { j } - \left( z ^ { 2 } + y z \right) \mathbf { k } and S is the surface of the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 , bounded by the planes z=0z = 0 and z=3z = 3 .

(Multiple Choice)
4.9/5
(41)

Let F(x,y,z)=zi+xj+yk\mathbf { F } ( x , y , z ) = z \mathbf { i } + x \mathbf { j } + y \mathbf { k } . Find the divergence of F.

(Multiple Choice)
4.9/5
(34)

Let ϕ(x,y)=3x2y3\phi ( x , y ) = 3 x ^ { 2 } y ^ { 3 } . Note that ϕ=6xy3,9x2y2\nabla \phi = \left\langle 6 x y ^ { 3 } , 9 x ^ { 2 } y ^ { 2 } \right\rangle . Evaluate the line integral C6xy3dx+9x2y2dy\int _ { C } 6 x y ^ { 3 } d x + 9 x ^ { 2 } y ^ { 2 } d y where C is the curve x=tet31,y=(2t+1)cos(2πt)x = t e ^ { t ^ { 3 } - 1 } , \mathrm { y } = ( 2 t + 1 ) \cos ( 2 \pi t ) , 0t10 \leq t \leq 1 .

(Short Answer)
4.7/5
(34)

Find a function f such that F=f\mathbf { F } = \nabla f and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the curve C. F(x,y)=yi+xj;\mathbf { F } ( x , y ) = y \mathbf { i } + x \mathbf { j }; C is the arc of the curve y=x4x3y = x ^ { 4 } - x ^ { 3 } from (1,0)( 1,0 ) to (2,8)( 2,8 ) .

(Essay)
4.8/5
(40)

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F(x,y)=exi+xyj\mathbf { F } ( x , y ) = e ^ { x } \mathbf { i } + x y \mathbf { j } and the curve CC is given by the vector function r(t)=t2i+t3j,0t1\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } + t ^ { 3 } \mathbf { j } , \quad 0 \leq t \leq 1 .

(Short Answer)
4.8/5
(42)

Evaluate C(xcosx+esinx+3y)dx+[5x+(1+y2)3+cos(ey+y2)]dy\oint _ { C } \left( x \cos x + e ^ { \sin x } + 3 y \right) d x + \left[ 5 x + \left( 1 + y ^ { 2 } \right) ^ { 3 } + \cos \left( e ^ { y } + y ^ { 2 } \right) \right] d y where C is the positively-oriented boundary of the half disk D: x2+y22,y0x ^ { 2 } + y ^ { 2 } \leq 2 , y \geq 0 .

(Short Answer)
4.7/5
(33)

Find the work done by the force F =(2x+y)i+(xy)j= ( 2 x + y ) \mathbf { i } + ( x y ) \mathbf { j } in moving an object from (1,0)( 1,0 ) to (2,3)( 2,3 ) along the path CC given by x=t+1,y=3tx = t + 1 , y = 3 t ..

(Short Answer)
4.9/5
(42)

Evaluate the line integral Cex2y2z2dx+sin(xyz)dy+ln(1+xy)dz\int _ { C } e ^ { x ^ { 2 } y ^ { 2 } z ^ { 2 } } d x + \sin ( x y z ) d y + \ln ( 1 + x y ) d z where CC is the line segment from (0,0,0)( 0,0,0 ) to (0,0,1)( 0,0,1 )

(Short Answer)
4.7/5
(50)

Use Green's Theorem to find the area of the region formed by the intersection of x2+y22x ^ { 2 } + y ^ { 2 } \leq 2 and y1y \geq 1 .

(Short Answer)
4.8/5
(40)

Evaluate cFdr\int _ { c } \mathbf { F } d \mathbf { r } where F(x,y)=(yx2+y2,xx2+y2)\mathbf { F } ( x , y ) = \left( \frac { - y } { x ^ { 2 } + y ^ { 2 } } , \frac { x } { x ^ { 2 } + y ^ { 2 } } \right) is the curve CC is given by C:x=5cost,y=5sint,0t2πC : x = 5 \cos t , y = 5 \sin t , 0 \leq t \leq 2 \pi .

(Multiple Choice)
4.9/5
(42)

Let f(x,y,z)=ln(x2+y2+z2)f ( x , y , z ) = \ln \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) compute 2f\nabla ^ { 2 } f .

(Essay)
4.9/5
(41)

Evaluate the line integral cxds\int _ { c } x d s , where CC is the curve x=t,y=t,0t1x = t , \quad y = t , \quad 0 \leq t \leq 1 .

(Multiple Choice)
4.9/5
(29)

Let F(x,y,z)=xj\mathbf { F } ( x , y , z ) = x \mathbf { j } . Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the elliptical path r(t)=costi+sintj+costk,0t2π\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k } , 0 \leq \mathrm { t } \leq 2 \pi .

(Multiple Choice)
4.8/5
(41)
Showing 161 - 180 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)