Exam 13: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A wire in the shape of the curve x=t3,y=2t32,z=3t+1,0t1x = t ^ { 3 } , y = 2 t ^ { \frac { 3 } { 2 } } , z = 3 t + 1,0 \leq t \leq 1 has density function p(x,y,z)=y2+1p ( x , y , z ) = y ^ { 2 } + 1 . Find the mass of the wire.

(Short Answer)
4.8/5
(33)

Let F(x,y,z)=yixj\mathbf { F } ( x , y , z ) = y \mathbf { i } - x \mathbf { j } . Find the curl of F.

(Multiple Choice)
4.9/5
(41)

Use Green's Theorem to compute the area of the region enclosed by the curve x=cos3t,y=sin3t,0t2πx = \cos ^ { 3 } t , y = \sin ^ { 3 } t , 0 \leq t \leq 2 \pi .

(Short Answer)
4.9/5
(47)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F(x,y,z)=x(x2+y2+z2)3/2i+y(x2+y2+z2)3/2j+z(x2+y2+z2)3/2k\mathbf { F } ( x , y , z ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { i } + \frac { y } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { j } + \frac { z } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } \mathbf { k } and S is the sphere x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 .

(Short Answer)
4.8/5
(44)

Sketch the vector field F(x,y)=xi+yj\mathbf { F } ( x , y ) = - x \mathbf { i } + y \mathbf { j } .  Sketch the vector field  \mathbf { F } ( x , y ) = - x \mathbf { i } + y \mathbf { j }  .

(Essay)
4.9/5
(41)

Find a function f(x,y)f ( x , y ) such that f=(x2+y)i+(x+y)j\nabla f = \left( x ^ { 2 } + y \right) \mathbf { i } + ( x + y ) \mathbf { j } .

(Multiple Choice)
4.9/5
(29)

Evaluate cxy2ds\int _ { c } x y ^ { 2 } d s where the CC is given by C:x=2cost,y=2sint,z=5t,0tπ2C : x = 2 \cos t , \quad y = 2 \sin t , z = \sqrt { 5 t } , 0 \leq t \leq \frac { \pi } { 2 } .

(Multiple Choice)
4.7/5
(32)

Determine the points (x,y,z)( x , y , z ) where the gradient field f(x,y,z)\nabla f ( x , y , z ) for f(x,y,z)=xy+xz+yzf ( x , y , z ) = x y + x z + y z has ZZ -component 00 .

(Short Answer)
4.7/5
(32)

Use Stokes' Theorem to evaluate Cxydx+yzdy+zxdz\int _ { C } x y d x + y z d y + z x d z , where C is the triangle with vertices (1,0,0),(0,1,0)( 1,0,0 ) , ( 0,1,0 ) , and (0,0,1)( 0,0,1 ) , oriented counterclockwise as viewed from above.

(Short Answer)
4.7/5
(35)

Evaluate the line integral Cxydx+(x+y)dy\int _ { C } x y d x + ( x + y ) d y where CC is the curve x=t2,y=t3,0t1x = t ^ { 2 } , y = t ^ { 3 } , 0 \leq t \leq 1

(Short Answer)
4.8/5
(34)

Evaluate the line integral cFdr\int _ { c } \mathbf { F } d \mathbf { r } where F(x,y)=xy2i+yj\mathbf { F } ( x , y ) = x y ^ { 2 } \mathbf { i } + y \mathbf { j } and the curve CC is the shortest path from (0,0)( 0,0 ) to (0,1)( 0,1 ) to (1.1)( 1.1 ) .

(Multiple Choice)
4.8/5
(26)

Use Stokes' Theorem to evaluate C(xz+2y)dx+(x2+5yz)dy+(y2+z)dz\int _ { C } ( x z + 2 y ) d x + \left( x ^ { 2 } + 5 y z \right) d y + \left( y ^ { 2 } + z \right) d z , where C is the curve of intersection of the paraboloid z=x2+5y2z = x ^ { 2 } + 5 y ^ { 2 } and the cylinder (x4)2+(y+3)2=16( x - 4 ) ^ { 2 } + ( y + 3 ) ^ { 2 } = 16 , oriented counterclockwise as viewed from above.

(Short Answer)
4.8/5
(35)

Let F(x,y,z)=zi+xj+yk\mathbf { F } ( x , y , z ) = z \mathbf { i } + x \mathbf { j } + y \mathbf { k } . Find the curl of F.

(Multiple Choice)
4.9/5
(31)

Evaluate the line integral Cxydx+zdy+ydz\int _ { C } x y d x + z d y + y d z , where the curve C is given in the figure below.  Evaluate the line integral  \int _ { C } x y d x + z d y + y d z  , where the curve C is given in the figure below.

(Short Answer)
4.9/5
(38)

Find a function f such that F=f\mathbf { F } = \nabla f and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the curve C. F(x,y,z)=2xy3z4i+3x2y2z4j+4x2y3z3k\mathbf { F } ( x , y , z ) = 2 x y ^ { 3 } z ^ { 4 } \mathbf { i } + 3 x ^ { 2 } y ^ { 2 } z ^ { 4 } \mathbf { j } + 4 x ^ { 2 } y ^ { 3 } z ^ { 3 } \mathbf { k } ;  C. x=t\text { C. } x = t , y=t2y = t ^ { 2 } , z=t3z = t ^ { 3 } , 0t20 \leq t \leq 2

(Essay)
4.8/5
(35)

Sketch the vector field F where F (x,y,z)=zk( x , y , z ) = z \mathbf { k } .  Sketch the vector field F where F  ( x , y , z ) = z \mathbf { k }  .

(Essay)
4.9/5
(42)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where S is the boundary surface of the region outside the sphere x2+y2+z2=1\mathrm { x } ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and inside the ball x2+y2+z24x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 4 and F=ey2i+(5y+ex2)j+(3z+2x)k\mathbf { F } = e ^ { y ^ { 2 } } \mathbf { i } + \left( 5 y + e ^ { x ^ { 2 } } \right) \mathbf { j } + ( - 3 z + 2 x ) \mathbf { k } .

(Short Answer)
4.9/5
(42)

Find the work done by the force field F(x,y)=xyi+x2j\mathbf { F } ( x , y ) = x y \mathbf { i } + x ^ { 2 } \mathbf { j } on a particle that moves along the curve x=y2x = y ^ { 2 } from (0,0)( 0,0 ) to (1.1)( 1.1 ) .

(Multiple Choice)
4.7/5
(37)

Use Green's Theorem to evaluate the line integral along the given positively oriented curve: Cx2ydx+xy5dy\int _ { C } x ^ { 2 } y d x + x y ^ { 5 } d y , where C is the square with vertices (±1,±1)( \pm 1 , \pm 1 ) .

(Short Answer)
4.8/5
(34)

Determine whether or not each of the following vector fields is conservative. Justify your answer.(a) Determine whether or not each of the following vector fields is conservative. Justify your answer.(a)   (b)   (c)  (b) Determine whether or not each of the following vector fields is conservative. Justify your answer.(a)   (b)   (c)  (c) Determine whether or not each of the following vector fields is conservative. Justify your answer.(a)   (b)   (c)

(Essay)
4.9/5
(39)
Showing 181 - 200 of 240
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)