Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } .(a) Sketch the intersection of z=f(x,y)z = f ( x , y ) and z=1z = 1 in the xyx y -plane.(b) Sketch the intersection of z=f(x,y)z = f ( x , y ) and x=0x = 0 in the yzy z -plane.(c) Sketch the intersection of z=f(x,y)z = f ( x , y ) and y=0y = 0 in the xzx z -plane.(d) Sketch the graph of z=f(x,y)z = f ( x , y ) in R3\mathbb { R } ^ { 3 } .

(Essay)
4.8/5
(30)

Use differentials to approximate 28310\frac { \sqrt [ 3 ] { 28 } } { \sqrt { 10 } } .

(Multiple Choice)
4.9/5
(39)

Let f(x,y,z)=x2y+y3z+xz3f ( x , y , z ) = x ^ { 2 } y + y ^ { 3 } z + x z ^ { 3 } and let P(2,1,1)P ( 2,1 , - 1 ) .(a) Find the directional derivative at PP in the direction of (1,2,3)( 1,2,3) .(b) In what direction does ff increase most rapidly? (c) What is the maximum rate of change of ff at the point PP ?

(Essay)
4.9/5
(36)

Describe the vertical traces x=kx = k and y=ky = k and the horizontal traces z=kz = k for the function f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } .

(Essay)
4.9/5
(38)

Let f(x,y,z)=x2+y2+xzf ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + x z . Find the directional derivative of ff at (1,2,0)( 1,2,0 ) in the direction of the vector v={1,1,1}\mathbf { v } = \{ 1 , - 1,1 \} .

(Short Answer)
4.9/5
(43)

Describe the level curves of the function f(x,y)=1x22y2f ( x , y ) = \sqrt { 1 - x ^ { 2 } - 2 y ^ { 2 } } .

(Multiple Choice)
4.9/5
(34)

Evaluate lim(x,y)(0,0)x23xy+y2x2+2y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } - 3 x y + y ^ { 2 } } { x ^ { 2 } + 2 y ^ { 2 } }

(Multiple Choice)
4.8/5
(35)

Find the range of the function f(x,y)=ln(xy2)f ( x , y ) = \ln \left( x - y ^ { 2 } \right) .

(Multiple Choice)
4.9/5
(42)

Show that T(t,x)=cos(2x)e4tT ( t , x ) = \cos ( 2 x ) e ^ { - 4 t } satisfies the heat equation δTδt=δ2Tδx2\frac { \delta T } { \delta t } = \frac { \delta ^ { 2 } T } { \delta x ^ { 2 } }

(Essay)
4.7/5
(30)

How many third-order partial derivatives does a function f(x,y)f ( x , y ) have?

(Multiple Choice)
4.9/5
(37)

If ff is a function of xx and yy , and yy is a function of xx , then indirectly ff depends only on xx : g(x)=f(x,y(x))g ( x ) = f ( x , y ( x ) ) . Use the Chain Rule to write an expression for dgdx\frac { d g } { d x } in terms of δfδx\frac { \delta f } { \delta x } and δfδy\frac { \delta f } { \delta y } .

(Essay)
4.9/5
(39)

Find the local maximum and minimum values and saddle points of the function f(x,y)=2x3+4y3+3x212x192y+5f ( x , y ) = 2 x ^ { 3 } + 4 y ^ { 3 } + 3 x ^ { 2 } - 12 x - 192 y + 5 .

(Essay)
4.8/5
(34)

Use the level curves of f(x,y)f ( x , y ) shown below to estimate the critical points of ff . Indicate whether ff has a saddle point or a local maximum or minimum at each of those points.  Use the level curves of  f ( x , y )  shown below to estimate the critical points of  f  . Indicate whether  f  has a saddle point or a local maximum or minimum at each of those points.

(Essay)
4.8/5
(38)

Consider f(x,y,z)=1x2y2z2f ( x , y , z ) = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } - z ^ { 2 } } . Where ff is continuous?

(Essay)
4.9/5
(32)

Given f(x,y)=x2sin(xy)f ( x , y ) = x ^ { 2 } \sin ( x y ) , find fxf _ { x } , fyf _ { y } , and fxyf _ { x y } .

(Essay)
4.9/5
(32)

Find an equation of the tangent plane to the parametric surface x=u2,y=uv2,z=v2x = u ^ { 2 } , y = u - v ^ { 2 } , z = v ^ { 2 } at the point (1,0,1)( 1,0,1 ) .

(Essay)
4.8/5
(30)

Suppose that z=xy,x=4(t31)z = x - y , x = 4 \left( t ^ { 3 } - 1 \right) , and y=lnty = \ln t . Find dzdt\frac { d z } { d t } .

(Essay)
4.8/5
(35)

If gg is a differentiable function and f(x,y)=g(x2+y2)f ( x , y ) = g \left( x ^ { 2 } + y ^ { 2 } \right) , show that yfxxfy=0y f _ { x } - x f _ { y } = 0

(Essay)
4.8/5
(35)

Let f(x,y)={x4+y4(x2+y2)2 if (x,y)(0,0)0 if (x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { l l } \frac { x ^ { 4 } + y ^ { 4 } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } } & \text { if } ( x , y ) \neq ( 0,0 ) \\0 & \text { if } ( x , y ) = ( 0,0 )\end{array} \right. Does this function have a limit at the origin? If so, prove it. If not, demonstrate why not.

(Essay)
4.9/5
(31)

If f(x,y)=yexyf ( x , y ) = y e ^ { x y } , find the values x0x _ { 0 } for which f(x0,5)=5f \left( x _ { 0 } , 5 \right) = 5 , and then find an equation of the plane tangent to the graph of ff at (x0,5,5)\left( x _ { 0 } , 5,5 \right) .

(Essay)
4.7/5
(36)
Showing 41 - 60 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)