Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given f(x,y)=xe2yf ( x , y ) = x e ^ { - 2 y } , at the point (4,0)( 4,0 ) find the equation of the tangent plane to the graph of ff . Also, find a normal vector to the graph of ff .

(Essay)
4.8/5
(39)

Use a linear approximation to estimate 1.0221.983+1\frac { 1.02 ^ { 2 } } { 1.98 ^ { 3 } + 1 } .

(Essay)
4.9/5
(34)

Let f(x,y,z)=(xy)(yz)(zx)f ( x , y , z ) = ( x - y ) ( y - z ) ( z - x ) . Compute δfδx+δfδy+δfδz\frac { \delta f } { \delta x } + \frac { \delta f } { \delta y } + \frac { \delta f } { \delta z } .

(Essay)
4.9/5
(34)

Optimize f(x,y)=x2+y2+2f ( x , y ) = x ^ { 2 } + y ^ { 2 } + 2 subject to xy=4x y = 4 .

(Essay)
4.8/5
(33)

The function f(x,y)=x2+y2+3xyf ( x , y ) = x ^ { 2 } + y ^ { 2 } + 3 x y has one critical point. Determine its location and type.

(Multiple Choice)
4.9/5
(35)

Find a normal vector to the surface with parametric equations x=2uv,y=u2v2,z=u2+v2x = 2 u v , y = u ^ { 2 } - v ^ { 2 } , z = u ^ { 2 } + v ^ { 2 } at the point (1,0,1)( 1,0,1 ) .

(Short Answer)
4.8/5
(29)

Let f(x,y,z)=x2y3xz+exlnyf ( x , y , z ) = x ^ { 2 } y ^ { 3 } - \frac { x } { z } + e ^ { x } \ln y . Find fxf _ { x } , fyf _ { y } , and fzf _ { z } .

(Essay)
4.9/5
(48)

In which direction does the directional derivative for f(x,y)=x2yf ( x , y ) = x ^ { 2 } y at (1,1)( 1,1 ) have value 1? Value 2- 2 ? Is there a direction for which the value is 4?

(Essay)
4.7/5
(39)

Show that there does not exist any function  Show that there does not exist any function   with continuous second partial derivatives in  \mathbb { R } ^ { 2 }  such that  \frac { \delta f } { \delta x } = x ^ { 2 } y  and  \frac { \partial f } { \partial y } = x  . with continuous second partial derivatives in R2\mathbb { R } ^ { 2 } such that δfδx=x2y\frac { \delta f } { \delta x } = x ^ { 2 } y and fy=x\frac { \partial f } { \partial y } = x .

(Essay)
4.9/5
(31)

Evaluate lim(x,y,z)(1,0,2)exyz2\lim _ { ( x , y , z ) \rightarrow ( 1,0 , - 2 ) } e ^ { x y - z ^ { 2 } }

(Multiple Choice)
4.8/5
(33)

Let z=f(x,y)z = f ( x , y ) such that f(1,2)=(3,4)\nabla f ( - 1,2 ) = ( 3 , - 4 ) . Find an equation of the tangent line to the level curve of f(x,y)f ( x , y ) that passes through point (1,2)( - 1,2 ) .

(Essay)
4.9/5
(36)

Evaluate lim(x,y)(2,2)tan((x2)2+(y2)2)(x2)2+(y2)2\lim _ { ( x , y ) \rightarrow ( 2,2 ) } \frac { \tan \left( ( x - 2 ) ^ { 2 } + ( y - 2 ) ^ { 2 } \right) } { ( x - 2 ) ^ { 2 } + ( y - 2 ) ^ { 2 } }

(Multiple Choice)
4.8/5
(41)

Given f(x,y)=14x4y3f ( x , y ) = \frac { 1 } { 4 } x ^ { 4 } y ^ { 3 } , at the point (1,2)( - 1,2 ) . Find (a) the maximum value of the directional derivative and (b) the unit vector in the direction in which the directional derivative takes on its maximum value.

(Essay)
4.8/5
(38)

Let f(x,y,z)=zxyf ( x , y , z ) = z ^ { x y } , z>0z > 0 . Find the value of the partial derivative fy(2,1,e)f _ { y } ( 2,1 , e ) .

(Multiple Choice)
4.8/5
(35)
Showing 281 - 294 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)