Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A package in the shape of a cylindrical box can be mailed by the U.S. Postal Service if the sum of its height and girth (the circumference of the circular base) is at most 108 in. Find the dimension of the package with largest volume that can be mailed.

(Essay)
4.9/5
(40)

Use a linear approximation to estimate 0.955.05\frac { 0.95 } { 5.05 } .

(Essay)
4.9/5
(31)

Find the critical points (if any) for f(x,y)=1x+1y+xyf ( x , y ) = \frac { 1 } { x } + \frac { 1 } { y } + x y and determine if each is a local extreme value or a saddle point.

(Essay)
4.9/5
(31)

The temperature at a point (x,y)( x , y ) of a flat metal plate is T(x,y)=9x2+16y2T ( x , y ) = 9 x ^ { 2 } + 16 y ^ { 2 } where T(x,y)T ( x , y ) is measured in degrees. Draw the isothermals for T(x,y)=T ( x , y ) = 0, 9, 16, and 144 degrees.

(Essay)
4.8/5
(40)

Let f(x,y)=tan1(x/y)f ( x , y ) = \tan ^ { - 1 } ( x / y ) . Find the value of the partial derivative fy(1,2)f _ { y } ( 1,2 ) .

(Multiple Choice)
4.8/5
(37)

Find the directional derivative of the function f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } at the point (1,1)( 1,1 ) in the direction θ=π4\theta = \frac { \pi } { 4 } .

(Multiple Choice)
4.8/5
(29)

Determine how many critical points the function f(x,y)=x2+y2+2x2y+3f ( x , y ) = x ^ { 2 } + y ^ { 2 } + 2 x ^ { 2 } y + 3 has.

(Multiple Choice)
4.9/5
(31)

Suppose that the quantity QQ produced of a certain good depends on the number of units of labor LL and the quantity of capital KK according to the function Q=900L1/3K2/3Q = 900 L ^ { 1 / 3 } K ^ { 2 / 3 } . Suppose also that labor costs $100 per unit and that capital costs $200 per unit.(a) What combination of labor and capital should be used to produce 36,000 units of the goods at minimum cost? What is that minimum cost? (b) Draw the level curves of CC , the cost function, and the graph of the constraint on the same set of axes.(c) Complete the value of λ\lambda . What does λ\lambda represent?

(Essay)
4.8/5
(40)

Let w=x3+y3+z3w = x ^ { 3 } + y ^ { 3 } + z ^ { 3 } , x=s+tx = s + t , y=s2t2y = s ^ { 2 } - t ^ { 2 } and z=stz = s t . Use the chain rule to show that s(δwδs)+t(δwδt)=3x3+6y3+6z3s \left( \frac { \delta w } { \delta s } \right) + t \left( \frac { \delta w } { \delta t } \right) = 3 x ^ { 3 } + 6 y ^ { 3 } + 6 z ^ { 3 } .

(Short Answer)
4.8/5
(42)

Consider a function of three variables P=f(A,r,N)P = f ( A , r , N ) , where PP is the monthly mortgage payment in dollars, AA is the amount borrowed in dollars, rr is the annual interest rate, and NN is the number of years before the mortgage is paid off.(a) Suppose f(180,000,6,30)=1080f ( 180,000,6,30 ) = 1080 . What does this tell you in financial terms? (b) Suppose δfδr(180,000,6,30)=115.73\frac { \delta f } { \delta r } ( 180,000,6,30 ) = 115.73 . What does this tell you in financial terms? (c) Suppose δfδN(180,000,6,30)=12.86\frac { \delta f } { \delta N } ( 180,000,6,30 ) = - 12.86 . What does this tell you in financial terms?

(Essay)
4.8/5
(37)

Find the range of the function f(x,y)=exy2f ( x , y ) = e ^ { x - y ^ { 2 } } .

(Multiple Choice)
4.8/5
(39)

If w=f(x,y,z)w = f ( x , y , z ) has continuous partial derivatives, x=s+tx = s + t , y=s2t2y = s ^ { 2 } - t ^ { 2 } , and z=stz = s t , show that sδwδs+tδwδt=xδwδx+2yδwδy+2zδwδzs \frac { \delta w } { \delta s } + t \frac { \delta w } { \delta t } = x \frac { \delta w } { \delta x } + 2 y \frac { \delta w } { \delta y } + 2 z \frac { \delta w } { \delta z }

(Short Answer)
4.8/5
(32)

Let x3y+y3z+z3x=4x ^ { 3 } y + y ^ { 3 } z + z ^ { 3 } x = 4 , find δzδy\frac { \delta z } { \delta y } .

(Multiple Choice)
4.8/5
(29)

Find the point(s) on the surface x2+y2z2=1x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 1 such that the normal vector at the point is parallel to the vector {1,1,1}\{ 1,1 , - 1 \} .

(Essay)
4.8/5
(48)

Find all solutions to the partial differential equation δ2fδyδx=0\frac { \delta ^ { 2 } f } { \delta y \delta x } = 0 .

(Essay)
4.9/5
(44)

Let f(x,y)=x2eyf ( x , y ) = x ^ { 2 } e ^ { y } and P(2,0)P ( - 2,0 ) .(a) Find the rate of change in the direction of f(P)\nabla f ( P ) .(b) Calculate Duf(P)D _ { u } f ( P ) where u\mathbf { u } is a unit vector making an angle θ=135\theta = 135 ^ { \circ } with f(P)\nabla f ( P ) .

(Essay)
4.7/5
(36)

Let f(x,y)=e2x+y2f ( x , y ) = e ^ { 2 x + y ^ { 2 } } . Find the value of the partial derivative fxyy(0,0)f _ { x yy } ( 0,0 ) .

(Multiple Choice)
4.9/5
(43)

Let f(x,y)=4y2f ( x , y ) = \sqrt { 4 - y ^ { 2 } } .(a) Evaluate f(3,0)f ( 3,0 ) .(b) Sketch the domain of ff .(c) What is the range of the function ff ?

(Essay)
4.7/5
(37)

Find δz/δx\delta z / \delta x and δz/δy\delta z/\delta y given that δz/δx\delta z / \delta x is defined implicitly as a function of xx and yy by the equation sinxyz+ln(x2+y2+z2)=0\sin x y z + \ln \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) = 0 .

(Essay)
4.7/5
(31)

The function z=xy+(x+y)(120xy)z = x y + ( x + y ) ( 120 - x - y ) has a maximum. Find the values of xx and yy at which it occurs.

(Essay)
4.9/5
(32)
Showing 61 - 80 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)