Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the maximum value of the function f(x,y)=64x2y2f ( x , y ) = 6 - 4 x ^ { 2 } - y ^ { 2 } subject to the constraint that 4x+y=54 x + y = 5 .

(Multiple Choice)
4.8/5
(38)

Find the minimum value of the function f(x,y)=xyf ( x , y ) = x y subject to the constraint that x2+y2=2x ^ { 2 } + y ^ { 2 } = 2 .

(Multiple Choice)
4.8/5
(38)

Let f(x,y)=(x3+y4)5f ( x , y ) = \left( x ^ { 3 } + y ^ { 4 } \right) ^ { 5 } . Find the value of fxyfyxf _ { x y } - f _ { y x } at the point (1,2)( 1,2 ) .

(Multiple Choice)
4.8/5
(41)

Find an equation of the tangent plane to the surface with parametric equations x=1+2u+3vx = 1 + 2 u + 3 v , y=5u+4vy = 5 - u + 4 v , z=3+5u7vz = 3 + 5 u - 7 v at the point (3,4,8)( 3,4,8 ) .

(Essay)
4.8/5
(26)

Let z=ln(2x2+y)z = \ln \left( 2 x ^ { 2 } + y \right) , and let xx and yy be functions of tt with x(1)=1,y(1)=2,x(1)=3, and y(1)=4x ( 1 ) = 1 , y ( 1 ) = 2 , x ^ { \prime } ( 1 ) = 3 \text {, and } y ^ { \prime } ( 1 ) = 4 . Find dz/dtd z / d t when t=1t = 1 .

(Multiple Choice)
5.0/5
(36)

Evaluate lim(x,y)(0,0)sin(x2+y2)x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { \sin \left( x ^ { 2 } + y ^ { 2 } \right) } { x ^ { 2 } + y ^ { 2 } }

(Multiple Choice)
5.0/5
(33)

If f(x,y)=4x2f ( x , y ) = 4 - x ^ { 2 } , find fx(1,1)f _ { x } ( 1,1 ) and fy(1,1)f _ { y } ( 1,1 ) and interpret these numbers as slopes. Illustrate with sketches.

(Essay)
4.9/5
(42)

Find the second directional derivative of f(x,y)=x2yf ( x , y ) = x ^ { 2 } y at the point (1,1)( - 1,1 ) in the direction (3,4)( 3,4 ) .

(Multiple Choice)
4.8/5
(34)

Find the maximum value of the function f(x,y)=10x+30yx2y2160f ( x , y ) = 10 x + 30 y - x ^ { 2 } - y ^ { 2 } - 160

(Multiple Choice)
4.9/5
(33)

Let f(x,y,z)=xeysinzf ( x , y , z ) = x e ^ { y \sin z } . Find the gradient vector f(1,1,0)\nabla f ( 1,1,0 ) at the point (x,y,z)=(1,1,0)( x , y , z ) = ( 1,1,0 ) .

(Multiple Choice)
4.9/5
(36)

Find the largest value of the directional derivative of the function f(x,y)=yx+yf ( x , y ) = \frac { y } { x + y } at the point (x,y)=(1,2)( x , y ) = ( 1,2 ) .

(Multiple Choice)
4.9/5
(43)

Find the absolute maximum and minimum values of f(x,y)=x2+2xy+3y2f ( x , y ) = x ^ { 2 } + 2 x y + 3 y ^ { 2 } over the region DD , where DD is a closed triangular region with vertices (1,2)( - 1 , - 2 ) , (1,1)( - 1,1 ) , and (2,1)( 2,1 ) .

(Essay)
4.8/5
(43)

Determine whether f(x,y)={3x22y2x2+y2 if (x,y)(0,0)0 if (x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { l l } \frac { 3 x ^ { 2 } - 2 y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } & \text { if } ( x , y ) \neq ( 0,0 ) \\0 & \text { if } ( x , y ) = ( 0,0 )\end{array} \right. is continuous at (0,0)( 0,0 ) .

(Essay)
4.8/5
(36)

A boundary stripe 3 inches wide is painted around a rectangle whose dimensions are 100 feet by 200 feet. Use differentials to approximate the number of square feet of paint in the stripe.

(Multiple Choice)
4.8/5
(36)

Let z=x2+xy+y2z = x ^ { 2 } + x y + y ^ { 2 } , x=2u+vx = 2 u + v , and y=u3vy = u - 3 v . Show that δ2zδuδv=7\frac { \delta ^ { 2 } z } { \delta u \delta v } = - 7

(Short Answer)
4.9/5
(35)

Find the point at which the function f(x,y,z)=2x+y2zf ( x , y , z ) = 2 x + y - 2 z has the maximum value subject to the constraint that x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .

(Multiple Choice)
4.8/5
(30)

Find an equation of the tangent plant to the parametric surface x=uv,y=u+v,z=u2x = u - v , y = u + v , z = u ^ { 2 } at the point (0,2,1)( 0,2,1 ) .

(Multiple Choice)
4.8/5
(41)

Let f(x,y,z)=x2yyz3+zf ( x , y , z ) = x ^ { 2 } y - y z ^ { 3 } + z and P(1,2,0)P ( 1 , - 2,0 ) . Calculate Duf(P)D _ { u } f ( P ) where u\mathbf { u } is a unit vector making an angle θ=45\theta = 45 ^ { \circ } with f(P)\nabla f ( P ) .

(Essay)
4.7/5
(28)

Find an equation of the tangent plane to the surface x+y+z=4\sqrt { x } + \sqrt { y } + \sqrt { z } = 4 at the point (4,1,1)( 4,1,1 ) .

(Multiple Choice)
4.8/5
(33)

Find the maximum value of the function f(x,y,z)=2x+y2zf ( x , y , z ) = 2 x + y - 2 z subject to the constraint that x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .

(Multiple Choice)
4.9/5
(39)
Showing 121 - 140 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)