Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let f(x,y)=sin(2x+y)f ( x , y ) = \sin ( 2 x + y ) . Find the value of the partial derivative fxy(π,π2)f _ { x y } \left( \pi , \frac { \pi } { 2 } \right) .

(Multiple Choice)
4.9/5
(40)

For the function z=x2+y21z = \sqrt { x ^ { 2 } + y ^ { 2 } - 1 } , sketch the level curves z=kz = k for k=k = 0, 1, 2, and 3.

(Essay)
4.9/5
(29)

Find the directional derivative of f(x,y)=x3+xy2f ( x , y ) = x ^ { 3 } + x y ^ { 2 } at the point (1,2)( 1 , - 2 ) in the direction toward the origin.

(Short Answer)
4.8/5
(36)

Find an equation of the tangent plant to the surface z=xy+1z = \frac { x } { y + 1 } at the point (1,4,15)\left( 1,4 , \frac { 1 } { 5 } \right) .

(Multiple Choice)
4.9/5
(40)

Find a normal vector to the surface xyz=8x y z = 8 at the point (1,2,4)( 1,2,4 ) .

(Multiple Choice)
4.7/5
(34)

Let x3+y2=x2y3x ^ { 3 } + y ^ { 2 } = x ^ { 2 } y ^ { 3 } . Use implicit differentiation to find δz/δx\delta z / \delta x when (x,y,z)=(1,2,1)( x , y , z ) = ( 1 , - 2,1 ) .

(Multiple Choice)
4.8/5
(37)

A rancher intends to fence off a rectangular region along a river (which serves as a natural boundary requiring no fence). If the enclosed area is to be 1800 square yards, what is the least amount of fence needed? Compute the value of λ\lambda . What does λ\lambda represent?

(Essay)
4.9/5
(33)

Find an equation of the tangent plant to the surface z=xyz = \frac { x } { \sqrt { y } } at the point (4,4,2)( 4,4,2 ) .

(Multiple Choice)
4.9/5
(33)

Let z=ex2sinyz = e ^ { x ^ { 2 } } \sin y , and let xx and yy be functions of tt with x(1)=0,y(1)=0,x(1)=3x ( 1 ) = 0 , y ( 1 ) = 0 , x ^ { \prime } ( 1 ) = 3 , and y(1)=4y ^ { \prime } ( 1 ) = 4 . Find dz/dtd z / d t when t=1t = 1 .

(Multiple Choice)
4.7/5
(42)

Let f(x,y)=1x+y2f ( x , y ) = \frac { 1 } { x + y ^ { 2 } } . Find the gradient vector f(1,1)\nabla f ( 1,1 ) at the point (x,y)=(1,1)( x , y ) = ( 1,1 ) .

(Multiple Choice)
4.9/5
(32)

The function f(x,y)=x2+y2+xyf ( x , y ) = x ^ { 2 } + y ^ { 2 } + x y has one critical point. Determine its location and type.

(Multiple Choice)
4.8/5
(41)

Evaluate lim(x,y)(0,0)x2yx2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } y } { x ^ { 2 } + y ^ { 2 } }

(Multiple Choice)
4.9/5
(38)

Evaluate lim(x,y,z)(0,0,0)x2+y2+z2sin(x2+y2+z2)\lim _ { ( x , y , z ) \rightarrow ( 0,0,0 ) } \frac { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } { \sin \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) }

(Multiple Choice)
4.8/5
(35)

If z3+xzy=0z ^ { 3 } + x z - y = 0 , find δ2zδxδy\frac { \delta ^ { 2 } z } { \delta x \delta y } in terms of xx , yy , and ZZ .

(Essay)
4.9/5
(45)

Determine how many critical points the function f(x,y)=x42x2+3yy3f ( x , y ) = x ^ { 4 } - 2 x ^ { 2 } + 3 y - y ^ { 3 } has.

(Multiple Choice)
4.9/5
(36)

Determine how many critical points the function f(x,y)=xyx2y+xy2f ( x , y ) = x y - x ^ { 2 } y + x y ^ { 2 } has.

(Multiple Choice)
4.9/5
(33)

Let exy2+cos(xz)+y2=10e ^ { xy ^ { 2 } } + \cos ( x z ) + y ^ { 2 } = 10 , find δzδy\frac { \delta z } { \delta y } .

(Multiple Choice)
4.8/5
(40)

Let z=f(x,y)z = f ( x , y ) , x=rcosθx = r \cos \theta , and y=rsinθy = r \sin \theta .(a) Show that f2=(δfδr)2+1r2(δfδθ)2| \nabla f | ^ { 2 } = \left( \frac { \delta f } { \delta r } \right) ^ { 2 } + \frac { 1 } { r ^ { 2 } } \left( \frac { \delta f } { \delta \theta } \right) ^ { 2 } (b) Let z=ln(x2+y2)z = \ln \left( x ^ { 2 } + y ^ { 2 } \right) compute f| \nabla f | by using the formula in part (a).

(Essay)
4.8/5
(37)

Let f(x,y)=3xyx+yf ( x , y ) = \frac { 3 x - y } { x + y } . Find the value of the partial derivative fy(1,1)f _ { y } ( 1,1 ) .

(Multiple Choice)
4.8/5
(33)

Describe the level curves of the function f(x,y)=x2+(y1)2yf ( x , y ) = \sqrt { x ^ { 2 } + ( y - 1 ) ^ { 2 } } - y .

(Multiple Choice)
4.7/5
(45)
Showing 201 - 220 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)