Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Describe the level curves of the function f(x,y)=x2+y2+3x4y+73f ( x , y ) = x ^ { 2 } + y ^ { 2 } + 3 x - 4 y + 73 .

(Multiple Choice)
4.8/5
(37)

Find the differential of z=3x+y2z = 3 x + y ^ { 2 }

(Multiple Choice)
4.9/5
(34)

Let f(x,y)=ln(x2y)f ( x , y ) = \ln ( x - 2 y ) .(a) Evaluate f(3,1)f ( 3,1 ) .(b) Sketch the domain of ff .(c) What is the range of the function ff ?

(Essay)
4.8/5
(41)

Find an equation of the tangent plane to the surface given by r(u,v)=(u+v)i+ucosvj+vsinuk\mathbf { r } ( u , v ) = ( u + v ) \mathbf { i } + u \cos v \mathbf { j } + v \sin u \mathbf { k } at the point (1,1,0)( 1,1,0 ) .

(Essay)
4.9/5
(39)

Find the maximum and minimum values of f(x,y)=2x+3y+4f ( x , y ) = 2 x + 3 y + 4 on the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Essay)
4.8/5
(37)

Find the directional derivative of f(x,y,z)=x2+y2zf ( x , y , z ) = x ^ { 2 } + y ^ { 2 } - z at the point (1,3,5)( 1,3,5 ) in the direction of a=2ij+4k\mathbf { a } = 2 \mathbf { i } - \mathbf { j } + 4 \mathbf { k }

(Short Answer)
4.8/5
(39)

If g(x,y)={x4+y2x2+y4 if (x,y)(0,0)0 if (x,y)=(0,0)g ( x , y ) = \left\{ \begin{array} { l l } \frac { x ^ { 4 } + y ^ { 2 } } { x ^ { 2 } + y ^ { 4 } } & \text { if } ( x , y ) \neq ( 0,0 ) \\0 & \text { if } ( x , y ) = ( 0,0 )\end{array} \right. find gx(1,0)\frac { \partial g } { \partial x } ( 1,0 ) and gy(1,0)\frac { \partial g } { \partial y } ( 1,0 ) .

(Essay)
5.0/5
(33)

Let ex=3sinye ^ { x } = 3 \sin y . Use implicit differentiation to find dy/dxd y / d x when (x,y)=(1,0)( x , y ) = ( 1,0 ) .

(Multiple Choice)
4.7/5
(36)

Evaluate lim(x,y)(1,2)2x2+y2xy\lim _ { ( x , y ) \rightarrow ( 1,2 ) } \frac { 2 x ^ { 2 } + y ^ { 2 } } { x y }

(Multiple Choice)
4.8/5
(40)

Evaluate lim(x,y)(0,0)xsiny\lim _ { ( x , y ) \rightarrow ( 0,0 ) } x \sin y

(Multiple Choice)
4.7/5
(35)

Suppose that z=x3y2z = x ^ { 3 } y ^ { 2 } , where both xx and yy are changing with time. At a certain instant when x=1x = 1 and y=2y = 2 , xx is decreasing at the rate of 2 units/s and yy is increasing at the rate of 3 units/s. How fast is ZZ changing at this instant? Is ZZ increasing or decreasing?

(Essay)
4.9/5
(39)

Let z=xy+x2yz = x y + x ^ { 2 } y , and let xx and yy be functions of SS and tt with x(0,0)=1,y(0,0)=2x ( 0,0 ) = 1 , y ( 0,0 ) = 2 , δx/δs=3\delta x / \delta s = 3 , and δy/δs=4\delta y / \delta s = 4 at (s,t)=(0,0)( s , t ) = ( 0,0 ) . Find δz/δs\delta z / \delta s when (s,t)=(0,0)( s , t ) = ( 0,0 ) .

(Multiple Choice)
4.9/5
(35)

Show that at (12,0)\left( \frac { 1 } { \sqrt { 2 } } , 0 \right) , the equation x2+12y2+13z2=1x ^ { 2 } + \frac { 1 } { 2 } y ^ { 2 } + \frac { 1 } { 3 } z ^ { 2 } = 1 defines ZZ implicitly as a function of xx and yy , and then compute δzδx(12,0,32)\frac { \delta z } { \delta x } \left( \frac { 1 } { \sqrt { 2 } } , 0 , \sqrt { \frac { 3 } { 2 } } \right) and δzδy(12,0,32)\frac { \delta z } { \delta y } \left( \frac { 1 } { \sqrt { 2 } } , 0 , \sqrt { \frac { 3 } { 2 } } \right) .

(Essay)
4.9/5
(36)

Find an equation of the tangent plant to the surface z=tan1(y/x)z = \tan ^ { - 1 } ( y / x ) at the point (2,2,π4)\left( - 2,2 , - \frac { \pi } { 4 } \right) .

(Multiple Choice)
4.9/5
(43)

One side of a rectangle is increasing at 4 ft/min and another at 7 ft/min. At the time when the first side is 24 ft long and the second is 32 ft long, find (a) how fast the area is changing.(b) how fast the diagonal is changing.

(Essay)
4.7/5
(35)

If all the third-order partial derivatives of f(x,y)f ( x , y ) are continuous, what is the largest number of them that can be distinct?

(Multiple Choice)
4.8/5
(41)

Find the domain of the function f(x,y,z)=13x+yzf ( x , y , z ) = \frac { 1 } { \sqrt { 3 x + y - z } } .

(Multiple Choice)
4.7/5
(33)

If z=f(x,y)z = f ( x , y ) has continuous partial derivatives, x=s+2tx = s + 2 t , and y=s2ty = s - 2 t , show that δdδsδzδt=2(δzδx)22(δzδy)2\frac { \delta \mathcal { d } } { \delta s} \frac { \delta z } { \delta t } = 2 \left( \frac { \delta z } { \delta x } \right) ^ { 2 } - 2 \left( \frac { \delta z } { \delta y } \right) ^ { 2 }

(Essay)
4.8/5
(36)

Let f(x,y)=3x+2yf ( x , y ) = 3 x + 2 y . Find the gradient vector f\nabla f .

(Multiple Choice)
4.7/5
(34)

If f(x,y)=2x2+4y2xyf ( x , y ) = 2 x ^ { 2 } + 4 y ^ { 2 } - x y , find the gradient at the point (2,1)( 2,1 ) . Also find the rate of change of f(x,y)f ( x , y ) in the direction θ=π3\theta = \frac { \pi } { 3 } at (2,1)( 2,1 ) .

(Essay)
4.9/5
(40)
Showing 181 - 200 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)