Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the directional derivative of the function f(x,y)=y2lnxf ( x , y ) = y ^ { 2 } \ln x at the point (1,2)( 1,2 ) in the direction (3,4)( 3,4 ) .

(Multiple Choice)
4.8/5
(37)

Find the direction of maximum increase of the function f(x,y,z)=xey+3zf ( x , y , z ) = x e ^ { - y } + 3 z at the point (1,0,4)( 1,0,4 ) .

(Multiple Choice)
4.8/5
(44)

Determine how many critical points the function f(x,y)=x2+y2+x2y+10f ( x , y ) = x ^ { 2 } + y ^ { 2 } + x ^ { 2 } y + 10 has.

(Multiple Choice)
4.9/5
(32)

If f(x,y,z)=xln(yz2)f ( x , y , z ) = x \ln \left( y z ^ { 2 } \right) , find fxyf _ { x y } , fxxf _ { x x } , and fyzf _ { y z } .

(Essay)
4.9/5
(35)

Find the directional derivative of f(x,y)=3x2+xyy3f ( x , y ) = 3 x ^ { 2 } + x y - y ^ { 3 } in the direction θ=π3\theta = \frac { \pi } { 3 } .

(Essay)
4.8/5
(39)

Let f(x,y)=(x2+y)3f ( x , y ) = \left( x ^ { 2 } + y \right) ^ { 3 } . If x=1x = 1 , find f(x,2x)f ( x , 2 x ) .

(Multiple Choice)
4.8/5
(35)

Let f(x,y,z)=4x2y2z2f ( x , y , z ) = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } - z ^ { 2 } } .(a) Evaluate f(1,1,1)f ( 1 , - 1,1 ) .(b) Sketch the domain of ff .(c) What is the range of the function ff ?

(Essay)
4.9/5
(35)

Find an equation of the tangent plane to the surface z=f(x,y)=x3y4z = f ( x , y ) = x ^ { 3 } y ^ { 4 } at the point (1,2,16)( - 1,2 , - 16 ) .

(Essay)
4.8/5
(37)

Let f(x,y,z)=2x+3yzf ( x , y , z ) = \sqrt { 2 x + 3 y - z } . Find the rate of change of ff at the point (1,1,4)( 1,1 , - 4 ) in the direction u\mathbf { u } where u\mathbf { u } is a unit vector making an angle θ=150\theta = 150 ^ { \circ } with f\nabla f .

(Essay)
4.8/5
(36)

Find the total differential of ww if w=f(x,y,z)=xy2z3exzyw = f ( x , y , z ) = x y ^ { 2 } z ^ { 3 } - e ^ { xz } y

(Essay)
4.9/5
(32)

The level curves of f(x,y)f ( x , y ) are sketched below.  The level curves of  f ( x , y )  are sketched below.   (a) Find  f _ { x } ( 2,1 )  (b) Find  f _ { y } ( 2,1 )  (c) Sketch the gradient vector  \nabla f ( 2,1 )  . (a) Find fx(2,1)f _ { x } ( 2,1 ) (b) Find fy(2,1)f _ { y } ( 2,1 ) (c) Sketch the gradient vector f(2,1)\nabla f ( 2,1 ) .

(Essay)
4.9/5
(33)

Use implicit differentiation to find δzδx\frac { \delta z } { \delta x } on the surface given by x3y+y2z2+xz3=3x ^ { 3 } y + y ^ { 2 } z ^ { 2 } + x z ^ { 3 } = 3 .

(Essay)
4.8/5
(34)

Let f(x,y,z)=2x+3yzf ( x , y , z ) = \sqrt { 2 x + 3 y - z } . Find the rate of change of ff at the point (1,1,4)( 1,1 , - 4 ) in the direction u\mathbf { u } where u\mathbf { u } is a unit vector making an angle θ=60\theta = 60 ^ { \circ } with f\nabla f .

(Essay)
5.0/5
(38)

Suppose that z=u2+uv+v3z = u ^ { 2 } + u v + v ^ { 3 } , and that u=2x2+3xyu = 2 x ^ { 2 } + 3 x y and v=2x3y+2v = 2 x - 3 y + 2 . Find δzδx\frac { \delta z } { \delta x } at (x,y)=(1,2)( x , y ) = ( 1,2 ) .

(Short Answer)
4.9/5
(38)

Given that the directional derivative of f(x,y)f ( x , y ) at the point (1,2)( - 1,2 ) in the direction of {3,4}\{ 3 , - 4 \} is 10- 10 and that f(1,2)=10| \nabla f ( - 1,2 ) | = 10 , find f(1,2)\nabla f ( - 1,2 ) .

(Short Answer)
4.9/5
(28)

Find an equation of the tangent plant to the surface z=x2+2y2z = x ^ { 2 } + 2 y ^ { 2 } at the point (1,1,3)( 1,1,3 ) .

(Multiple Choice)
4.8/5
(32)

Find a normal vector to the surface x2+z2=5x ^ { 2 } + z ^ { 2 } = 5 at the point (1,3,2)( 1,3 , - 2 ) .

(Multiple Choice)
4.8/5
(40)

Let f(x,y,z)=xy+yz+zxf ( x , y , z ) = \frac { x } { y } + \frac { y } { z } + \frac { z } { x } . Find the rate of change of ff at P(1,1,1)P ( 1 , - 1,1 ) in the direction from PP toward (2,1,0)( 2,1,0 ) .

(Short Answer)
4.8/5
(33)

Suppose you want to give a closed cylindrical tank of radius 20 feet and height 15 feet a cost of paint 0.01 inch thick. Use the differential of the volume of the tank to estimate how many gallons of paint will be required. (1 gallon is approximately 231 cubic inches.)

(Short Answer)
4.8/5
(47)

Let f(x,y)=xyx2+y2f ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } and let CmC _ { m } be the curve with the equation y=mxy = m x , where mm is a constant. The value of the limit of F(x,y)F ( x , y ) as (x,y)( x , y ) approaches (0,0)( 0,0 ) along CmC _ { m } is

(Multiple Choice)
4.7/5
(43)
Showing 81 - 100 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)