Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Sketch the domain of the function z=x2+y21z = \sqrt { x ^ { 2 } + y ^ { 2 } - 1 } .

(Essay)
4.9/5
(33)

Let f(x,y)=x2+y2f ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } .(a) Sketch the intersection of z=f(x,y)z = f ( x , y ) and z=1z = 1 in the xyx y -plane.(b) Sketch the intersection of z=f(x,y)z = f ( x , y ) and x=0x = 0 in the yzy z -plane.(c) Sketch the intersection of z=f(x,y)z = f ( x , y ) and y=1y = 1 in the xzx z -plane.(d) Sketch the graph of z=f(x,y)z = f ( x , y ) in R3\mathbb { R } ^ { 3 } .

(Essay)
4.8/5
(39)

What is the shortest distance from the origin to the surface xyz2=2x y z ^ { 2 } = 2 ?

(Short Answer)
4.9/5
(37)

Let f(x,y)={x3y2x4+y4 if (x,y)(0,0)0 if (x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { l l } \frac { x ^ { 3 } y ^ { 2 } } { x ^ { 4 } + y ^ { 4 } } & \text { if } ( x , y ) \neq ( 0,0 ) \\0 & \text { if } ( x , y ) = ( 0,0 )\end{array} \right. Where is ff continuous?

(Short Answer)
4.9/5
(35)

Find the shortest distance from the origin to the surface z2=2xy+2z ^ { 2 } = 2 x y + 2 .

(Multiple Choice)
4.9/5
(33)

Let exy2+cos(xz)+y2=10e ^ { xy ^ { 2 } } + \cos ( x z ) + y ^ { 2 } = 10 , find δzδx\frac { \delta z } { \delta x } .

(Multiple Choice)
4.9/5
(41)

Let f(x,y,z)=2zln(x2yz)f ( x , y , z ) = 2 z \ln \left( x ^ { 2 } y z \right) . Find fz(12,1,4)f _ { z } \left( \frac { 1 } { 2 } , 1,4 \right) .

(Multiple Choice)
4.7/5
(33)

Use differentials to approximate 24+5\sqrt { 24 } + \sqrt { 5 } .

(Multiple Choice)
4.7/5
(40)

Let f(x,y)=x2y3f ( x , y ) = x ^ { 2 } y ^ { 3 } . Find the value of the partial derivative fx(1,1)f _ { x } ( 1,1 ) .

(Multiple Choice)
4.8/5
(37)

Find an equation of the tangent plane to the hyperboloid x2+y2z22xy+4xz=4x ^ { 2 } + y ^ { 2 } - z ^ { 2 } - 2 x y + 4 x z = 4 at the point (1,0,1)( 1,0,1 ) .

(Multiple Choice)
4.7/5
(42)

Find the direction θ\theta in which the directional derivative of the function f(x,y)=xy+y2f ( x , y ) = x y + y ^ { 2 } at the point (1,1)( 1,1 ) is maximum.

(Multiple Choice)
4.8/5
(31)

Identify the graph of the function f(x,y)=3x2+y2f ( x , y ) = \sqrt { 3 - x ^ { 2 } + y ^ { 2 } } .

(Multiple Choice)
4.9/5
(30)

What point on the surface 1x+1y+1z=1\frac { 1 } { x } + \frac { 1 } { y } + \frac { 1 } { z } = 1 , x>0x > 0 , y>0y > 0 , z>0z > 0 is closest to the origin?

(Short Answer)
4.8/5
(34)

Find the point at which the function f(x,y)=xyx2yxy2f ( x , y ) = x y - x ^ { 2 } y - x y ^ { 2 } has a local maximum.

(Multiple Choice)
4.8/5
(34)

Evaluate lim(x,y)(0,0)xsiny\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x } { \sin y }

(Multiple Choice)
5.0/5
(23)

Describe how the graph of g(x,y)=2f(x1,y1)g ( x , y ) = 2 f ( x - 1 , y - 1 ) is obtained from the graph of z=f(x,y)z = f ( x , y ) .

(Essay)
4.9/5
(38)

If f(x,y)=xyx2+y2f ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } then lim(x,y)(0,0)f(x,y)\lim _ { ( x , y ) \rightarrow ( 0,0 ) } f ( x , y )

(Multiple Choice)
4.9/5
(41)

Let w=xyzw = x y z , x=s+tx = s + t , y=s2t2y = s ^ { 2 } - t ^ { 2 } and z=stz = s t . Use the chain rule to show that s(δwδs)+t(δwδt)=5xyzs \left( \frac { \delta w } { \delta s } \right) + t \left( \frac { \delta w } { \delta t } \right) = 5 x y z .

(Short Answer)
4.8/5
(27)

Show that there does not exist any function f(x,y)f ( x , y ) with continuous second partial derivatives such that δfδx=2y\frac { \delta f } { \delta x } = 2 y and fy=2x\frac { \partial f } { \partial y } = - 2 x

(Essay)
4.9/5
(34)

Let f(x,y)=xy+yxf ( x , y ) = \frac { x } { y } + \frac { y } { x } . Find the gradient vector f\nabla f .

(Multiple Choice)
4.9/5
(36)
Showing 141 - 160 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)