Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find δzδy\frac { \delta z } { \delta y } for x3y+xz3=0x ^ { 3 } - y + x z ^ { 3 } = 0

(Essay)
4.8/5
(33)

Let f(x,y)=2x+3yf ( x , y ) = \sqrt { 2 x + 3 y } .(a) In which direction does ff increase most rapidly at the point (3,1)( 3,1 ) ? (b) What is the maximum rate of change of ff at the point (3,1)( 3,1 ) ? (c) Find a unit vector u\mathbf { u } such that Duf=0D _ { u } f = 0 at (3,1)( 3,1 ) .

(Essay)
4.8/5
(34)

Find the linear approximation to the function f(x,y)=ln(3xy)f ( x , y ) = \ln ( 3 x - y ) at (1,2)( 1,2 ) and use it to approximate f(0.95,2.03)f ( 0.95,2.03 ) .

(Essay)
4.9/5
(42)

The level curves of a function f(x,y)f ( x , y ) and a curve with equation g(x,y)=cg ( x , y ) = c ( CC constant) are given below. Estimate the point where ff has a maximum value and the point where ff has a minimum value, subject to the constraint that g(x,y)=cg ( x , y ) = c . Indicate your answer in the figure.  The level curves of a function  f ( x , y )  and a curve with equation  g ( x , y ) = c  (  C  constant) are given below. Estimate the point where  f  has a maximum value and the point where  f  has a minimum value, subject to the constraint that  g ( x , y ) = c  . Indicate your answer in the figure.

(Essay)
4.9/5
(37)

A right triangle as leg AA wit length 4, leg B{ B } with length 3, and hypotenuse with length 5. Use a total differential to approximate the length of the hypotenuse if leg AA had length 4.2 and leg B { B } had length 2.9.

(Short Answer)
4.9/5
(36)

Describe the level surfaces k=1k = 1 , k=0k = 0 , k=1k = - 1 for the function f(x,y,z)=1x212y213z2f ( x , y , z ) = 1 - x ^ { 2 } - \frac { 1 } { 2 } y ^ { 2 } - \frac { 1 } { 3 } z ^ { 2 } .

(Essay)
4.9/5
(36)

Find the extreme values of f(x,y)=xy+2y2+x4y4f ( x , y ) = x y + 2 y ^ { 2 } + x ^ { 4 } - y ^ { 4 } on the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Essay)
4.8/5
(42)

Let z=x+yz = x + y , and let xx and yy be functions of SS and tt with x(0,0)=1,y(0,0)=2x ( 0,0 ) = 1 , y ( 0,0 ) = 2 , δx/δs=3\delta x / \delta s = 3 , and δy/δs=4\delta y / \delta s = 4 at (s,t)=(0,0)( s , t ) = ( 0,0 ) . Find δz/δ\delta z / \delta \text {s } when (s,t)=(0,0)( s , t ) = ( 0,0 ) .

(Multiple Choice)
4.9/5
(33)

Use the method of Lagrange multipliers to find points on the surface of x2+y2+z2=3x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 3 where the function f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z has (a) a minimum (b) a maximum.

(Essay)
4.9/5
(34)

Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the wall is 0.05 cm thick and the metal in the top and bottom is 0.1 cm thick.

(Multiple Choice)
4.9/5
(40)

If f(r,θ)=rsinθ+r2tan2θf ( r , \theta ) = r \sin \theta + r ^ { 2 } \tan ^ { 2 } \theta , find the partial derivative of ff with respect to rr and the partial derivative with respect to θ\theta , both at the point (4,π6)\left( - 4 , \frac { \pi } { 6 } \right) .

(Essay)
4.7/5
(34)

Consider the equation x2+y2+z2=49x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 .(a) Sketch this surface.  Consider the equation  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49  .(a) Sketch this surface.   (b) Find an equation of the tangent plane to the surface at the point  ( 6,2,3 )  .(c) Find a symmetric equation of the line perpendicular to the tangent plane at the point  ( 6,2,3 )  . (b) Find an equation of the tangent plane to the surface at the point (6,2,3)( 6,2,3 ) .(c) Find a symmetric equation of the line perpendicular to the tangent plane at the point (6,2,3)( 6,2,3 ) .

(Essay)
4.9/5
(46)

A bug is crawling on the surface z=x2+xy+2y2z = x ^ { 2 } + x y + 2 y ^ { 2 } . When he reaches the point (2,1,8)( 2,1,8 ) he wants to avoid vertical change. In which direction should he head? (He wants the directional derivative in the ZZ -direction to be zero.)

(Essay)
4.8/5
(31)

If ff is a function of xx and yy , and yy is a function of xx , then indirectly ff depends only on x:g(x)=f(x,y(x))x : g ( x ) = f ( x , y ( x ) ) . If f(x,y)=sinx+1y2f ( x , y ) = \sin x + \sqrt { 1 - y ^ { 2 } } and y(x)=cosxy ( x ) = \cos x , calculate dgdx\frac { d g } { d x } .

(Essay)
4.8/5
(42)

Consider the surface given by z=xy3x2yz = x y ^ { 3 } - x ^ { 2 } y . Find an equation for the tangent plane to the surface at the point (3,2,6)( 3,2,6 ) . Also, find parametric equations for the normal line to the surface at the point (3,2,6)( 3,2,6 )

(Essay)
4.8/5
(42)

Find δzδx\frac { \delta z } { \delta x } for x3y2z+sin(xyz)=0x ^ { 3 } - y ^ { 2 } z + \sin ( x y z ) = 0

(Essay)
4.8/5
(33)

Determine if f(x,y)={x2+xyx2+y2 if (x,y)(0,0)1 if (x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { l l } \frac { x ^ { 2 } + x y } { x ^ { 2 } + y ^ { 2 } } & \text { if } ( x , y ) \neq ( 0,0 ) \\1 & \text { if } ( x , y ) = ( 0,0 )\end{array} \right. is everywhere continuous, and if not, locate the point(s) of discontinuity.

(Essay)
4.8/5
(33)

Consider f(x,y)={x4y4x2+y2 if (x,y)(0,0)0.1 if (x,y)=(0,0)f ( x , y ) = \left\{ \begin{array} { l l } \frac { x ^ { 4 } - y ^ { 4 } } { x ^ { 2 } + y ^ { 2 } } & \text { if } ( x , y ) \neq ( 0,0 ) \\0.1 & \text { if } ( x , y ) = ( 0,0 )\end{array} \right. Where is ff continuous?

(Essay)
4.9/5
(30)

Find fzxf _ {z x } , fyyf _ { y y } , and fyxf _ { y x} if f(x,y)=sinx2yf ( x , y ) = \sin x ^ { 2 } y .

(Essay)
4.8/5
(33)

Let x3y+y3z+z3x=4x ^ { 3 } y + y ^ { 3 } z + z ^ { 3 } x = 4 , find δzδx\frac { \delta z } { \delta x } .

(Multiple Choice)
4.7/5
(38)
Showing 221 - 240 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)