Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine how many critical points the function f(x,y)=x22x+y3+yf ( x , y ) = x ^ { 2 } - 2 x + y ^ { 3 } + y has.

(Multiple Choice)
4.8/5
(42)

Find the maximum and minimum values of the function f(x,y)=xyf ( x , y ) = x y on the ellipse given by the equation x2+y24=1x ^ { 2 } + \frac { y ^ { 2 } } { 4 } = 1 .

(Essay)
4.8/5
(46)

Find the point on the plane x2y+z=3x - 2 y + z = 3 where x2+4y2+2z2x ^ { 2 } + 4 y ^ { 2 } + 2 z ^ { 2 } is minimum.

(Short Answer)
4.9/5
(42)

Evaluate lim(x,y)(0,0)x2y2x2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x ^ { 2 } - y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } }

(Multiple Choice)
4.8/5
(43)

Let f(x,y,z)=x3y2z+1f ( x , y , z ) = x ^ { 3 } y ^ { 2 } z + 1 . If x=1x = 1 , find f(x,x2,x)f \left( x , x ^ { 2 } , - x \right) .

(Multiple Choice)
4.8/5
(35)

The function f(x,y)=x22y2f ( x , y ) = x ^ { 2 } - 2 y ^ { 2 } has one critical point. Determine its location and type.

(Multiple Choice)
4.8/5
(24)

Find all solutions to the partial differential equation δ2fδxδx=0\frac { \delta ^ { 2 } f } { \delta x \delta x } = 0 .

(Essay)
4.8/5
(39)

Find both partial derivatives if f(x,y)=2x3y3x2yf ( x , y ) = \frac { 2 x - 3 y } { 3 x - 2 y }

(Essay)
4.7/5
(36)

In using Lagrange multipliers to minimize the function f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } subject to the constraint that x+y=3x + y = 3 , what is the value of the multiplier λ\lambda ?

(Multiple Choice)
4.8/5
(33)

Let f(x,y)=xsinyf ( x , y ) = x \sin y . Find f(2,π3)f \left( 2 , \frac { \pi } { 3 } \right) .

(Multiple Choice)
4.8/5
(36)

The dimensions of a closed rectangular box are measured to be 60 cm, 40 cm, and 30 cm. The ruler that is used has a possible error in measurement of at most 0.1 cm. Use differentials to estimate the maximum error in the calculated volume of the box.

(Short Answer)
4.8/5
(43)

Use the level curves of f(x,y)f ( x , y ) shown below to estimate the critical points of ff . Indicate whether ff has a saddle point or a local maximum or minimum at each of those points.  Use the level curves of  f ( x , y )  shown below to estimate the critical points of  f  . Indicate whether  f  has a saddle point or a local maximum or minimum at each of those points.

(Essay)
4.8/5
(40)

Find the directions in which the directional derivative of f(x,y)=x2y+x3f ( x , y ) = x ^ { 2 } y + x ^ { 3 } at the point (1,2)( - 1,2 ) has the value 1.

(Short Answer)
4.7/5
(41)

Identify the graph of the function f(x,y)=3x2y2f ( x , y ) = 3 - x ^ { 2 } - y ^ { 2 } .

(Multiple Choice)
4.7/5
(30)

Describe the level surfaces of the function f(x,y,z)=zx2y2f ( x , y , z ) = z - x ^ { 2 } - y ^ { 2 } .

(Essay)
4.8/5
(30)

Given f(x,y)=2x3y23x3+8y4f ( x , y ) = 2 x ^ { 3 } y ^ { 2 } - 3 x ^ { 3 } + 8 y ^ { 4 } , find fx and fyf _ { x } \text { and } f _ { y } and evaluate each at (1,2)( 1,2 ) .

(Essay)
4.9/5
(42)

The graph of level curves of f(x,y)f ( x , y ) is given. Find a possible formula for f(x,y)f ( x , y ) and sketch the surface z=f(x,y)z = f ( x , y ) .  The graph of level curves of  f ( x , y )  is given. Find a possible formula for  f ( x , y )  and sketch the surface  z = f ( x , y )  .

(Essay)
4.9/5
(38)

Show that f(x,y)=eycosx2xyf ( x , y ) = e ^ { y } \cos x - 2 x y satisfies Laplace Equation fxx+fyy=0f _ { xx } + f _ { y y } = 0 .

(Essay)
4.9/5
(38)

Find the absolute maximum and minimum value of f(x,y)=x23y22x+6yf ( x , y ) = x ^ { 2 } - 3 y ^ { 2 } - 2 x + 6 y on the square region DD with vertices (0,0)( 0,0 ) , (0,2)( 0,2 ) , (2,2)( 2,2 ) , and (2,0)( 2,0 ) .

(Essay)
4.9/5
(43)

Find an equation of the plane tangent to the surface xyz=2x y z = 2 at (1,1,2)( 1 , - 1 , - 2 ) .

(Essay)
4.8/5
(37)
Showing 161 - 180 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)