Exam 11: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the points on the hyperboloid of one sheet x2+y2z2=1x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 1 where the tangent plane is parallel to the plane 2xy+z=32 x - y + z = 3 .

(Essay)
4.9/5
(35)

Evaluate lim(x,y,x)(0,0,0)x2+y2+z2(x2y2+z2)\lim _ { ( x , y , x ) \rightarrow ( 0,0,0 ) } \frac { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } { \left( x ^ { 2 } - y ^ { 2 } + z ^ { 2 } \right) }

(Multiple Choice)
4.8/5
(30)

Find limh0ln((x+h)2y)ln(x2y)h\lim _ { h \rightarrow 0 } \frac { \ln \left( ( x + h ) ^ { 2 } y \right) - \ln \left( x ^ { 2 } y \right) } { h }

(Short Answer)
4.8/5
(38)

Find the local maximum and minimum values and saddle points of the function f(x,y)=x3+y33xy+5f ( x , y ) = x ^ { 3 } + y ^ { 3 } - 3 x y + 5 .

(Essay)
4.7/5
(42)

Let z=x2y+xy2z = x ^ { 2 } y + x y ^ { 2 } and x=2u+vx = 2 u + v , and y=u3vy = u - 3 v . Show that δ2zδuδv=16x6y\frac { \delta ^ { 2 } z } { \delta u \delta v } = - 16 x - 6 y .

(Essay)
4.8/5
(45)

Find the point at which the function f(x,y,z)=2x+y2zf ( x , y , z ) = 2 x + y - 2 z has the minimum value subject to the constraint that x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .

(Multiple Choice)
4.7/5
(31)

Find the direction of maximum increase of the function f(x,y,z)=x22xy+z2f ( x , y , z ) = x ^ { 2 } - 2 x y + z ^ { 2 } at the point (1,1,2)( 1,1,2 ) .

(Multiple Choice)
4.9/5
(39)

Find an equation of the tangent plant to the surface z=ex+yz = e ^ { x + y } at the point (0,0,1)( 0,0,1 ) .

(Multiple Choice)
4.8/5
(45)

The quality QQ of a good produced by a company is given by Q=10K0.6L0.4Q = 10 K ^ { - 0.6 } L ^ { 0.4 } , where KK is the quantity of capital and LL is the quantity of labor used. Capital costs are $20 per unit, labor costs are $10 per unit, and the company wants to keep costs for capital and labor combined to $150.(a) What combination of labor and capital should be used to produce maximum quantity? What is the maximum value? (b) Draw the level curves of QQ and the graph of the budget constraint on the same set of axes.(c) Complete the value of λ\lambda . What does λ\lambda represent?

(Essay)
4.8/5
(44)

Find the unit vectors u\mathbf { u } and V\mathbf { V } for f(x,y)=x3+3y2f ( x , y ) = x ^ { 3 } + 3 y ^ { 2 } which describes the direction of maximal and minimal increase at (2,1)( 2,1 ) on the level curve f(x,y)=11f ( x , y ) = 11 .

(Essay)
4.8/5
(30)

Given f(x,y)=x2yf ( x , y ) = x ^ { 2 } y , P0=(3,2)P _ { 0 } = ( 3,2 ) , let u\mathbf { u } be the unit vector for which the directional derivative Duf(P0)D _ { \mathbf { u } } f \left( P _ { 0 } \right) has maximum value. This maximum value is

(Multiple Choice)
4.8/5
(37)

Evaluate lim(x,y)(0,0)xyx2+xy+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x y } { x ^ { 2 } + x y + y ^ { 2 } }

(Multiple Choice)
4.9/5
(44)

Find an equation of the tangent plane to the surface with parametric equations x=cosusinvx = \cos u \sin v , y=sinusinvy = \sin u \sin v , z=cosvz = \cos v at the point (12,12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } , \frac { 1 } { \sqrt { 2 } } \right) .

(Essay)
4.9/5
(40)

Find three positive numbers xx , yy , and ZZ whose sum is 48 and product is maximum.

(Essay)
4.7/5
(37)

Find a point on the surface xyz=8x y z = 8 such that the normal vector at the point is parallel to the vector {4,2,1}\{ 4,2,1 \} .

(Multiple Choice)
4.8/5
(37)

Find the maximum value of the function f(x,y)=xyf ( x , y ) = x y subject to the constraint that x2+y2=2x ^ { 2 } + y ^ { 2 } = 2 .

(Multiple Choice)
4.9/5
(32)

Let f(x,y)=x2+2xy+y2f ( x , y ) = x ^ { 2 } + 2 x y + y ^ { 2 } . If x=2x = 2 , find f(x,2x)f ( x , 2 x ) .

(Multiple Choice)
4.8/5
(39)

Let f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } .(a) Sketch the intersection of z=f(x,y)z = f ( x , y ) and z=1z = 1 in the xyx y -plane.(b) Sketch the intersection of z=f(x,y)z = f ( x , y ) and x=1x = 1 in the xyx y -plane.(c) Sketch the intersection of z=f(x,y)z = f ( x , y ) and y=1y = 1 in the xyx y -plane.(d) Sketch the graph of z=f(x,y)z = f ( x , y ) in R3\mathbb { R } ^ { 3 } .

(Essay)
4.9/5
(27)

Describe the level surfaces of the function f(x,y,z)=z2x3yf ( x , y , z ) = z - 2 x - 3 y .

(Short Answer)
4.7/5
(41)

Find an equation of the tangent plane to the surface x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 at the point (1,2,2)( 1,2,2 ) .

(Multiple Choice)
4.8/5
(34)
Showing 21 - 40 of 294
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)