Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Sketch a continuous curve y = f(x) with the following properties: f(2) = 3; f (x) > 0 for x > 4; and f (x) < 0 for x < 4 .

(Essay)
4.8/5
(28)

Determine all critical points for the function. - f(x)=x33x2+2f ( x ) = x ^ { 3 } - 3 x ^ { 2 } + 2

(Multiple Choice)
4.9/5
(35)

Find the largest open interval where the function is changing as requested. -Increasing f(x)=x22x+1f ( x ) = x ^ { 2 } - 2 x + 1

(Multiple Choice)
4.8/5
(50)

Find all possible functions with the given derivative. - y=72ty ^ { \prime } = \frac { 7 } { 2 \sqrt { t } }

(Multiple Choice)
4.9/5
(37)

Solve the problem. -Given the velocity and initial position of a body moving along a coordinate line at time t, find the body's positior t\mathrm { t } . v=cosπ2t,s(0)=1v = \cos \frac { \pi } { 2 } t , s ( 0 ) = 1

(Multiple Choice)
4.7/5
(28)

Find the location of the indicated absolute extremum for the function. -Find the location of the indicated absolute extremum for the function. -

(Multiple Choice)
4.9/5
(37)

Find the extreme values of the function and where they occur. - y=x2exy = x ^ { 2 } e ^ { x }

(Multiple Choice)
4.9/5
(36)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=0.1x315x239x85f ( x ) = 0.1 x ^ { 3 } - 15 x ^ { 2 } - 39 x - 85

(Multiple Choice)
4.7/5
(38)

Show that the function has exactly one zero in the given interval. - r(θ)=4cotθ+1θ2+6,(0,π)r ( \theta ) = 4 \cot \theta + \frac { 1 } { \theta ^ { 2 } } + 6 , ( 0 , \pi )

(Essay)
4.8/5
(36)

Solve the problem. -Find the graph that matches the given table. Solve the problem. -Find the graph that matches the given table.

(Multiple Choice)
4.8/5
(38)

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(r)=(r10)3f ( r ) = ( r - 10 ) ^ { 3 }

(Multiple Choice)
4.9/5
(44)

Find the absolute extreme values of the function on the interval. - f(x)=cscx,π2x3π2f ( x ) = \csc x , - \frac { \pi } { 2 } \leq x \leq \frac { 3 \pi } { 2 }

(Multiple Choice)
4.8/5
(44)

L'Hopital's rule does not help with the given limit. Find the limit some other way. - limθπ/2cscθcotθ\lim _ { \theta \rightarrow \pi / 2 ^ { - } } \frac { \csc \theta } { \cot \theta }

(Multiple Choice)
4.9/5
(38)

Provide an appropriate response. -  Determine the values of constants a and b so that f(x)=ax2+bx has an absolute maximum at the point (2,4)\text { Determine the values of constants a and b so that } f ( x ) = a x ^ { 2 } + b x \text { has an absolute maximum at the point } ( 2,4 ) \text {. }

(Multiple Choice)
4.9/5
(43)

Solve the initial value problem. - dydx=12x+7,y(4)=5\frac { d y } { d x } = \frac { 1 } { 2 \sqrt { x } } + 7 , y ( 4 ) = - 5

(Multiple Choice)
4.9/5
(38)

Find the location of the indicated absolute extremum for the function. -Find the location of the indicated absolute extremum for the function. -

(Multiple Choice)
4.9/5
(36)

L'Hopital's rule does not help with the given limit. Find the limit some other way. - limxθ+secxtanx\lim _ { x \rightarrow \theta ^ { + } } \frac { \sec x } { \tan x }

(Multiple Choice)
4.8/5
(37)

Solve the problem. -Sketch a smooth curve through the origin with the following properties: f(x)>0\mathrm { f } ^ { \prime } ( \mathrm { x } ) > 0 for x<0;f(x)<0\mathrm { x } < 0 ; \mathrm { f } ^ { \prime } ( \mathrm { x } ) < 0 for x>0\mathrm { x } > 0 ; f(x)\mathrm { f } ^ { \prime \prime } ( \mathrm { x } ) approaches 0 as xx approaches - \infty ; and f(x)f ^ { \prime \prime } ( x ) approaches 0 as xx approaches \infty .

(Essay)
4.8/5
(33)

Solve the problem. -You are driving along a highway at a steady 86ft/sec86 \mathrm { ft } / \mathrm { sec } when you see a deer ahead and slam on the brakes. What constant deceleration is required to stop your car in 264ft264 \mathrm { ft } ?

(Multiple Choice)
4.9/5
(33)

Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. -Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. -

(Multiple Choice)
4.9/5
(36)
Showing 21 - 40 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)