Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x)=x3+2.5x2+2x3f ( x ) = x ^ { 3 } + 2.5 x ^ { 2 } + 2 x - 3

(Multiple Choice)
4.7/5
(43)

Solve the problem. -Apply Newton's method to f(x)=xa,a>0f ( x ) = \sqrt [ a ] { x } , a > 0 , and write an expression for xn+1x _ { n } + 1 . If the initial guess x0x _ { 0 } is greater than or equal to 1 , what happens to xn+1\left| x _ { n } + 1 \right| as nn \rightarrow \infty ?

(Essay)
4.8/5
(39)

Find the absolute extreme values of the function on the interval. - h(x)=12x+3,3x4h ( x ) = \frac { 1 } { 2 } x + 3 , - 3 \leq x \leq 4

(Multiple Choice)
4.8/5
(37)

L'Hopital's rule does not help with the given limit. Find the limit some other way. - limx0xcotxcosx\lim _ { x \rightarrow 0 } \frac { x \cot x } { \cos x }

(Multiple Choice)
4.8/5
(31)

Find the most general antiderivative. - (6cost)dt\int ( - 6 \cos t ) d t

(Multiple Choice)
4.9/5
(46)

Find all possible functions with the given derivative. - y=4x2+1y ^ { \prime } = 4 x ^ { 2 } + 1

(Multiple Choice)
4.7/5
(32)

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x)=x3+12x2+48x+4f ( x ) = x ^ { 3 } + 12 x ^ { 2 } + 48 x + 4

(Multiple Choice)
4.7/5
(37)

Use l'Hopital's Rule to evaluate the limit. - limx13x2+6x214x22x+14\lim _ { x \rightarrow \infty } \frac { 13 x ^ { 2 } + 6 x - 2 } { 14 x ^ { 2 } - 2 x + 14 }

(Multiple Choice)
4.8/5
(34)

Solve the problem. -A private shipping company will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 120 in. Suppose you want to mail a box with square sides so that its Dimensions are h by h by w and it's girth is 2h + 2w. What dimensions will give the box its largest volume?

(Multiple Choice)
4.9/5
(47)

Answer each question appropriately. -How many curves y=f(x)y = f ( x ) have the following properties? i. d2ydx2=7x\frac { \mathrm { d } ^ { 2 } \mathrm { y } } { \mathrm { dx } 2 } = 7 \mathrm { x } ii. The graph passes through the point (0,3)( 0,3 ) and has a horizontal tangent at that point.

(Multiple Choice)
4.8/5
(41)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. - limxx2x\lim _ { x \rightarrow \infty } \frac { x } { 2 ^ { x } }

(Essay)
4.9/5
(36)

Find the largest open interval where the function is changing as requested. -Increasing f(x)=1x2+1\quad f ( x ) = \frac { 1 } { x ^ { 2 } + 1 }

(Multiple Choice)
4.7/5
(45)

Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -

(Multiple Choice)
4.8/5
(34)

Find the derivative at each critical point and determine the local extreme values. - y={x25x+10,x1x2+15x10,x>1y = \left\{ \begin{array} { l l } - x ^ { 2 } - 5 x + 10 , & x \leq 1 \\- x ^ { 2 } + 15 x - 10 , & x > 1\end{array} \right.

(Multiple Choice)
4.8/5
(39)

Find the extreme values of the function and where they occur. - y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }

(Multiple Choice)
5.0/5
(35)

Find an antiderivative of the given function. - 8cos3x8 \cos 3 x

(Multiple Choice)
4.8/5
(40)

Find the extrema of the function on the given interval, and say where they occur. - sinx+cosx,0x2π\sin x + \cos x , 0 \leq x \leq 2 \pi

(Multiple Choice)
4.7/5
(31)

Answer the problem. -If the derivative of an odd function g(x) is zero at x = c, can anything be said about the value of g at x = -c? Give reasons for you answer.

(Essay)
4.8/5
(47)

Solve the initial value problem. - dydx=1x3+x,x>0;y(1)=2\frac { d y } { d x } = \frac { 1 } { x ^ { 3 } } + x , x > 0 ; y ( 1 ) = 2

(Multiple Choice)
4.9/5
(38)

Find an antiderivative of the given function. - x61x6x ^ { 6 } - \frac { 1 } { x ^ { 6 } }

(Multiple Choice)
4.8/5
(43)
Showing 241 - 260 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)