Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y=x3+x+4y = | x - 3 | + | x + 4 | on the interval 5<x<5- 5 < x < 5  Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y = | x - 3 | + | x + 4 |  on the interval  - 5 < x < 5

(Multiple Choice)
4.7/5
(41)

Answer the problem. -If the derivative of an even function f(x) is zero at x = c, can anything be said about the value of f at x = -c? Give reasons for your answer.

(Essay)
4.7/5
(34)

Use Newton's method to estimate the requested solution of the equation. Start with given value of x0 and then give x2 as the estimated solution. - x2+4x1=0;x0=0; Find the left-hand solution. - x ^ { 2 } + 4 x - 1 = 0 ; x _ { 0 } = 0 ; \text { Find the left-hand solution. }

(Multiple Choice)
4.9/5
(36)

Find a value of c that makes the function continuous at the given value of x. If it is impossible, state this. - f(x)={x24,x<0c,x=02(x1)6,x>0;x=0f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } - 4 , & x < 0 \\c , & x = 0 \\- 2 ( x - 1 ) - 6 , & x > 0\end{array} ; x = 0 \right.

(Multiple Choice)
4.8/5
(42)

Use differentiation to determine whether the integral formula is correct. - xcosxdx=x22sinx+C\int x \cos x d x = \frac { x ^ { 2 } } { 2 } \sin x + C

(True/False)
4.8/5
(38)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. -  Give an example of two differentiable functions f and g with limxf(x)=limxg(x)=0 that satisfy limxf(x)g(x)=\text { Give an example of two differentiable functions } f \text { and } g \text { with } \lim _ { x \rightarrow \infty } f ( x ) = \lim _ { x \rightarrow\infty } g ( x ) = 0 \text { that satisfy } \lim _ { x \rightarrow \infty } \frac { f ( x ) } { g ( x ) } = \infty \text {. }

(Essay)
4.8/5
(29)

Use l'H^opital's rule to find the limit. - limθ 0sinθ4θ\lim _ { \theta \rightarrow \ 0 } \frac { \sin \theta ^ { 4 } } { \theta }

(Multiple Choice)
4.9/5
(30)

Solve the problem. -  Let c(x)=t(p0p)p3 where t and p0 are constants. Show that c(x) is greatest when p=34p0\text { Let } c ( x ) = t \left( p _ { 0 } - p \right) p ^ { 3 } \text { where } t \text { and } p _ { 0 } \text { are constants. Show that } c ( x ) \text { is greatest when } p = \frac { 3 } { 4 } p _ { 0 } \text {. }

(Essay)
4.8/5
(29)

Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y=x+4x5y = | x + 4 | - | x - 5 | on the interval <x<- \infty < x < \infty  Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y = | x + 4 | - | x - 5 |  on the interval  - \infty < x < \infty

(Multiple Choice)
4.8/5
(41)

Find the absolute extreme values of the function on the interval. - f(x)=ln(x+2)+1x,1x6f ( x ) = \ln ( x + 2 ) + \frac { 1 } { x } , 1 \leq x \leq 6

(Multiple Choice)
5.0/5
(33)

Find the extreme values of the function and where they occur. - y=x+1x2+2x+2y = \frac { x + 1 } { x ^ { 2 } + 2 x + 2 }

(Multiple Choice)
4.9/5
(41)

Find the absolute extreme values of the function on the interval. - f(x)=5x4/3,27x8f ( x ) = 5 x ^ { 4 / 3 } , - 27 \leq x \leq 8

(Multiple Choice)
4.9/5
(32)

Find all possible functions with the given derivative. - y=5x7y ^ { \prime } = 5 x ^ { 7 }

(Multiple Choice)
4.9/5
(36)

Using the derivative of f(x) given below, determine the critical points of f(x). - f(x)=(x5)exf ^ { \prime } ( x ) = ( x - 5 ) e ^ { - x }

(Multiple Choice)
4.8/5
(40)

Use a computer algebra system (CAS) to solve the given initial value problem. - y=2(1x2)1+x2,y(0)=1y ^ { \prime } = \frac { 2 \left( 1 - x ^ { 2 } \right) } { 1 + x ^ { 2 } } , y ( 0 ) = 1

(Multiple Choice)
4.9/5
(30)

Find the most general antiderivative. - xx+xx2dx\int \frac { x \sqrt { x } + \sqrt { x } } { x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(37)

Find the extreme values of the function and where they occur. - y=x33x2+6x8y = x ^ { 3 } - 3 x ^ { 2 } + 6 x - 8

(Multiple Choice)
4.8/5
(33)

Solve the initial value problem. - dsdt=costsint,s(π2)=4\frac { \mathrm { ds } } { \mathrm { dt } } = \cos \mathrm { t } - \sin t , s \left( \frac { \pi } { 2 } \right) = 4

(Multiple Choice)
4.8/5
(46)

Find all possible functions with the given derivative. - y=31x2y ^ { \prime } = 3 - \frac { 1 } { x ^ { 2 } }

(Multiple Choice)
4.9/5
(38)

Answer the problem. -The function P(x)=2x+200x,0<x<P ( x ) = 2 x + \frac { 200 } { x } , 0 < x < \infty models the perimeter of a rectangle of dimensions xx by 100x\frac { 100 } { x } . (a) Find the extreme values for P. (b) Give an interpretation in terms of perimeter of the rectangle for any values found in part (a).

(Essay)
4.8/5
(35)
Showing 201 - 220 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)